(本題10分)如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,
點D在⊙O 上,過點C的切線交AD的延長線于點E,且AE⊥CE,
連接CD.
(1)求證:DC=BC;若AB=10,AC=8,求tan∠DCE的值.
證明:
(1)連接OC.·················   1分
∵OA=OC,
∴∠OAC=∠OCA.
∵CE是⊙O的切線,
∴∠OCE=90°..············ 2分
∵AE⊥CE,
∴∠AEC=∠OCE=90°.
∴OC∥AE.                     . 3分
∴∠OCA=∠CAD.
∴∠CAD=∠BAC.         .·· 4分
.
∴DC=BC.                   . 5分
(2)∵AB是⊙O的直徑,
∴∠ACB=90°.
∴BC= ···· 6分
∵∠CAE=∠BAC∠AEC=∠ACB=90°,
∴△ACE∽△ABC.                  7分
.
.              8分
∵DC=BC=3,
.                  9分
∴tan∠DCE= .                10分解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)如圖所示,以平行四邊形ABCD的頂點A為圓心,AB為半徑作圓,交AD,BC于E,F(xiàn),延長BA交⊙A于G,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題10分)如圖所示,已知圓錐底面半徑r=10cm,母線長為30cm.

【小題1】(1)求它的側(cè)面展開圖的圓心角和表面積.
【小題2】(2)若一螞蟻從A點出發(fā)沿著圓錐側(cè)面行到母線SA的中點B,請你動腦筋想一想它所走的最短路線是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年浙江省蕭浦沿中學(xué)九年級12月月考數(shù)學(xué)卷 題型:解答題

(本題10分)如圖所示,已知圓錐底面半徑r=10cm,母線長為30cm.

【小題1】(1)求它的側(cè)面展開圖的圓心角和表面積.
【小題2】(2)若一螞蟻從A點出發(fā)沿著圓錐側(cè)面行到母線SA的中點B,請你動腦筋想一想它所走的最短路線是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:011-2012學(xué)年山西省大同市九年級上學(xué)期第一次月考數(shù)學(xué)卷 題型:填空題

(本題10分)如圖所示,以平行四邊形ABCD的頂點A為圓心,AB為半徑作圓,交AD,BC于E,F(xiàn),延長BA交⊙A于G,

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京市房山區(qū)2011年九年級學(xué)題統(tǒng)一練習(xí) 題型:解答題

(本題10分)如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,

點D在⊙O 上,過點C的切線交AD的延長線于點E,且AE⊥CE,

連接CD.

(1)求證:DC=BC;若AB=10,AC=8,求tan∠DCE的值.

 

 

查看答案和解析>>

同步練習(xí)冊答案