從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選一種正多邊形鑲嵌,能夠拼成一個(gè)平面圖形的共有


  1. A.
    3種
  2. B.
    4種
  3. C.
    5種
  4. D.
    6種
A
分析:幾何圖形鑲嵌成平面的關(guān)鍵是:圍繞一點(diǎn)拼在一起的多邊形的內(nèi)角加在一起恰好組成一個(gè)周角.360°為正多邊形一個(gè)內(nèi)角的整數(shù)倍才能單獨(dú)鑲嵌.
解答:∵用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個(gè)平面圖案,
∴正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選一種正多邊形鑲嵌,能夠拼成一個(gè)平面圖形的有正三角形,正四邊形,正六邊形,共有3種.
故選A.
點(diǎn)評(píng):用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個(gè)平面圖案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選一種正多邊形鑲嵌,能夠拼成一個(gè)平面圖形的共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形.
(1)請(qǐng)根據(jù)下列圖形,填寫表中空格:
精英家教網(wǎng)
正多邊形邊數(shù) 3 4 5 6 n
正多邊形每個(gè)內(nèi)角的度數(shù)
 
 
 
 
 
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,是某市公園周圍街巷的示意圖,A點(diǎn)表示1街與2巷的十字路口,B點(diǎn)表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點(diǎn)到B點(diǎn)的一條路徑,那么,你能同樣的方法寫出由A點(diǎn)到B點(diǎn)盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請(qǐng)全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請(qǐng)你從所得的四個(gè)關(guān)系中任選一個(gè)加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線,將多邊形分割成若干個(gè)小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
請(qǐng)你按照上述方法將圖4中的六邊形進(jìn)行分割,并寫出得到的小三角形的個(gè)數(shù)以及求出每個(gè)圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導(dǎo)出n邊形內(nèi)角和的計(jì)算公式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖1,是某市公園周圍街巷的示意圖,A點(diǎn)表示1街與2巷的十字路口,B點(diǎn)表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點(diǎn)到B點(diǎn)的一條路徑,那么,你能同樣的方法寫出由A點(diǎn)到B點(diǎn)盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請(qǐng)全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個(gè)圖形中∠P(均為小于平角的角)與∠A,∠C的關(guān)系,請(qǐng)你從所得的四個(gè)關(guān)系中任選一個(gè)加以說明.
(4)閱讀材料:多邊形上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線,將多邊形分割成若干個(gè)小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個(gè)、3個(gè)、4個(gè)小三角形.
請(qǐng)你按照上述方法將圖4中的六邊形進(jìn)行分割,并寫出得到的小三角形的個(gè)數(shù)以及求出每個(gè)圖形中的六邊形的內(nèi)角和.試把這一結(jié)論推廣至n邊形,并推導(dǎo)出n邊形內(nèi)角和的計(jì)算公式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省期末題 題型:解答題

在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形.
(1)請(qǐng)根據(jù)下列圖形,填寫表中空格:
(2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形?
(3)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案