如圖:△ABC是等邊三角形?
(1)若AD=BE=CF,求證△DEF是等邊三角形.?
(2)請(qǐng)問(1)的逆命題成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)用反例說(shuō)明?
(1)證明:∵△ABC是等邊三角形,
∴∠A=∠B=∠C=60°,AC=AB=BC,
∵AD=BE=CF,
∴AC-CF=BC-BE=AB-AD,
∴EC=AF=BD,
∴在△ADF,△BED,△CFE中,
AD=BE=CF
∠A=∠B=∠C
EC=AF=BD
,
∴△ADF≌△BED≌△CFE(SAS),
∴DF=DE=EF,
∴△DEF是等邊三角形,

(2)(1)的逆命題成立,
已知:△DEF是等邊三角形,求證:AD=BE=CF.
證明:∵△DEF是等邊三角形,
∴∠EDF=∠EFD=∠DEF=60°,DF=EF=DE,
∵等邊三角形ABC,
∴∠A=∠B=∠C=60°,
∴∠ADF+∠AFD=120°,∠ADF+∠BDE=120°,∠BDE+∠DEB=120°,∠AFD+∠EFC=120°,
∴∠ADF=∠DEB=∠EFC,
在△ADF,△BED,△CFE中,
DF=ED=FE
∠A=∠B=∠C
∠ADF=∠BED=∠CFE
,
∴△ADF≌△BED≌△CFE(AAS),
∴AD=BE=CF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,D是等邊△ABC的邊AB上一點(diǎn),E是BC延長(zhǎng)線上一點(diǎn),CE=DA,連接DE交AC于F,過D點(diǎn)作DG⊥AC于G點(diǎn).證明下列結(jié)論:
(1)AG=
1
2
AD;
(2)DF=EF;
(3)S△DGF=S△ADG+S△ECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AD是等邊△ABC的中線,E是AC上一點(diǎn),且AD=AE,則∠EDC=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC為正三角形,面積為S.D1,E1,F(xiàn)1分別是△ABC三邊上的點(diǎn),且AD1=BE1=CF1=
1
2
AB,可得△D1E1F1,則△D1E1F1的面積S1=______;如,D2,E2,F(xiàn)2分別是△ABC三邊上的點(diǎn),且AD2=BE2=CF2=
1
3
AB,則△D2E2F2的面積S2=______;按照這樣的思路探索下去,Dn,En,F(xiàn)n分別是△ABC三邊上的點(diǎn),且
ADn=BEn=CFn=
1
n+1
AB,則Sn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQAE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有______.(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知∠AOB=30°,點(diǎn)P在∠AOB內(nèi)部,P1與P關(guān)于OB對(duì)稱,P2與P關(guān)于OA對(duì)稱,則P1,O,P2三點(diǎn)所構(gòu)成的三角形是( 。
A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,△ABC是等邊三角形,BD是中線,DE⊥BC于E.若EC=2,則BE=( 。
A.10B.8C.6D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知等邊△ABC,AC=AD,且AC⊥AD,垂足為點(diǎn)A,則∠BEC的度數(shù)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案