【題目】如圖1(注:與圖2完全相同),二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.
(1)求該二次函數(shù)的解析式;
(2)設該拋物線的頂點為D,求△ACD的面積;
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標.
【答案】(1)y=x2﹣x﹣4;(2)4;(3)四邊形APEQ為菱形,E點坐標為(﹣,﹣).理由詳見解析.
【解析】試題分析:(1)將A,B點坐標代入函數(shù)y=x2+bx+c中,求得b、c,進而可求解析式;(2)由解析式先求得點D、C坐標,再根據(jù)S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC,列式計算即可;(3)注意到P,Q運動速度相同,則△APQ運動時都為等腰三角形,又由A、E對稱,則AP=EP,AQ=EQ,易得四邊形四邊都相等,即菱形.利用菱形對邊平行且相等的性質(zhì)可用t表示E點坐標,又E在E函數(shù)上,所以代入即可求t,進而E可表示.
試題解析:(1)∵二次函數(shù)y=x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),
∴,
解得: ,
∴y=x2﹣x﹣4;
(2)過點D作DM⊥y軸于點M,
∵y=x2﹣x﹣4=(x﹣1)2﹣,
∴點D(1,﹣)、點C(0,﹣4),
則S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;
(3)四邊形APEQ為菱形,E點坐標為(﹣,﹣).理由如下
如圖2,E點關(guān)于PQ與A點對稱,過點Q作,QF⊥AP于F,
∵AP=AQ=t,AP=EP,AQ=EQ
∴AP=AQ=QE=EP,
∴四邊形AQEP為菱形,
∵FQ∥OC,
∴,
∴
∴AF=t,FQ=t
∴Q(3﹣t,﹣t),
∵EQ=AP=t,
∴E(3﹣t﹣t,﹣t),
∵E在二次函數(shù)y=x2﹣x﹣4上,
∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,
∴t=,或t=0(與A重合,舍去),
∴E(﹣,﹣).
科目:初中數(shù)學 來源: 題型:
【題目】下列各式中不能用平方差公式計算的是( )
A.(x﹣y)(﹣x+y)
B.(﹣x+y)(﹣x﹣y)
C.(﹣x﹣y)(x﹣y)
D.(x+y)(﹣x+y)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將下列多項式分解因式,結(jié)果中不含因式x﹣1的是( )
A.x2﹣1
B.x(x﹣2)+(2﹣x)
C.x2﹣2x+1
D.x2+2x+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E(與點B、C不重合)是BC邊上一點,將線段EA繞點E順時針旋轉(zhuǎn)90°到EF,過點F作BC的垂線交BC的延長線于點G,連接CF.
(1)求證:△ABE≌△EGF;
(2)若AB=2,S△ABE=2S△ECF,求BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,正方形ABCD中,E是AD的中點,F(xiàn)是AB邊上的一點,連接FE并延長與CD的延長線相交于點G,作EH⊥FG交BC的延長線于點H.
(1)若BC=8,BF=5,求線段FG的長;
(2)求證:EH=2EG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com