如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連精英家教網(wǎng)接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.
分析:(1)欲證AC2=AE•AB,可以證明△ACE∽△ABC得出;
(2)判斷FB與⊙O′的位置關系,可以連接O′B,證明∠O′BF=90°,得出FB與⊙O′相切;
(3)確定B,F(xiàn)兩點的坐標,待定系數(shù)法求出直線FB的解析式.
解答:精英家教網(wǎng)(1)證明:連接BC,∵EA=EC,
∴∠A=∠ACE,
∵AB⊥CD,
∴AC=BC,
∴∠A=∠ABC,
∴∠ACE=∠ABC,
∵∠A=∠A,
∴△ACE∽△ABC,
∴AC:AB=EC:AC,
∴AC2=AE•AB;

(2)解:連接O′B,BD,
∵FB=FE,
∴∠FBE=∠FEB,
∵∠ODB=∠ABC,
∵∠ODB=∠O′BD,
∴∠A=∠ABC,
∴∠BEF=∠A+∠ACE,
∴∠FBC=∠O′BD,
∵∠DBC=90°,
∴∠O′BF=90°,
∴FB與⊙O′相切;

(3)解:O′B=
16-4
=2
3
,B(0,-2
3
),
∵DC⊥AB,
∴O為AB的中點,
即AO=OB=2
3
,
∴EA=EC=OA-OE,
設OE的長為x,則EC=2
3
-x,
在Rt△OCE中4+x2=(2
3
-x)2
,x=
2
3
3

過點F作FG⊥BE,
∵EB=OB+OE=2
3
+
2
3
3
=
8
3
3
,且FB=FE,
∴GB=
1
2
EB=
4
3
3
,∴OG=OB=GB=
2
3
3
,
∵OC∥FG,
OC
FG
=
EO
EG
,即
2
FG
=
2
3
3
4
3
3
,
解得FG=4,
∴F(-4,-
2
3
3
),
直線PB的解析式為y=kx+b,將B(0,-2
3
),F(xiàn)(-4,-
2
3
3
)代入得y=-
3
3
x-2
3
點評:本題考查了相似三角形的性質(zhì),切線的判定,及用待定系數(shù)法求出直線的解析式,計算量大,望仔細做題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

18、如圖,在直角坐標系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標為
(24,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,點P的坐標為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標是橫坐標的
3
2
倍.
(1)求點A的坐標;
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當△ABC與△CDE相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,△ABC的三個頂點的坐標分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標上相應字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習冊答案