觀察下列各式及驗證過程:數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式
(1)按照上述三個等式及其驗證過程中的基本思想,猜想數(shù)學(xué)公式的變形結(jié)果并進行驗證.
(2)針對上述各式反映的規(guī)律,寫出用n(n為任意的自然數(shù),且n≥2)表示的等式,并給出證明.

解:(1)
驗證:;
(2)
驗證:
分析:(1)通過觀察,不難發(fā)現(xiàn):等式的變形過程利用了二次根式的性質(zhì)=a(a≥0),把根號內(nèi)的移到根號外;
(2)根據(jù)上述變形過程的規(guī)律,即可推廣到一般.表示左邊的式子時,觀察根號外的和根號內(nèi)的分子、分母之間的關(guān)系可得:
點評:本題主要考查了二次根式的性質(zhì).此題是一個找規(guī)律的題目,觀察時,既要注意觀察等式的左右兩邊的聯(lián)系,還要注意右邊必須是一種特殊形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探索規(guī)律
觀察下列各式及驗證過程:n=2時有式①:
2
3
=
2+
2
3
n=3時有式②:
3
8
=
3+
3
8

式①驗證:
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

式②驗證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)針對上述式①、式②的規(guī)律,請寫出n=4時的式子;
(2)請寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式及驗證過程:
1
2
(
1
3
-
1
4
)
=
1
3
3
8
驗證:
1
2
(
1
3
-
1
4
)
=
1
2×3×4
=
3
32×4
=
1
3
3
8
;
1
3
(
1
4
-
1
5
)
=
1
4
4
15
驗證:
1
3
(
1
4
-
1
5
)
=
1
3×4×5
=
4
42×5
=
1
4
4
15
;
(1)按照上述兩個等式及其驗證過程的基本思路,猜想
1
4
(
1
5
-
1
6
)
的變形結(jié)果并進行驗證;
(2)針對上述各式反映的規(guī)律,寫出用n(n為大于等于2的整數(shù))表示的等式,并進行驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式及驗證過程:
1
2
-
1
3
=
1
2
2
3
,驗證
1
2
-
1
3
=
1
2×3
=
2
22×3
=
1
2
2
3
;
1
2
(
1
3
-
1
4
)
=
1
3
3
8
,驗證
1
2
(
1
3
-
1
4
)
=
1
2×3×4
=
3
32×4
=
1
3
3
8
1
3
(
1
4
-
1
5
)
=
1
4
4
15
,驗證
1
3
(
1
4
-
1
5
)
=
1
3×4×5
=
4
42×5
=
1
4
4
15

(1)按照上述三個等式及其驗證過程中的基本思想,猜想
1
4
(
1
5
-
1
6
)
的變形結(jié)果并進行驗證.
(2)針對上述各式反映的規(guī)律,寫出用n(n為任意的自然數(shù),且n≥2)表示的等式,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式及驗證過程:
N=2時有式①:
2
3
=
2+
2
3
       N=3時有式②:
3
8
=
3+
3
8

式①驗證:
2
3
?
=
23
3
?
=
(23-2)+2
22-1
=
2+
2
3

式②驗證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

(1)針對上述式①、式②的規(guī)律,請寫出n=4時變化的式子;
(2)請寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式及驗證過程:
1
2
-
1
3
=
1
2
2
3
,驗證
1
2
-
1
3
=
1
2×3
=
2
22×3
=
1
2
2
3
;
1
2
(
1
3
-
1
4
)
=
1
3
3
8
,驗證
1
2
(
1
3
-
1
4
)
=
1
2×3×4
=
3
32×4
=
1
3
3
8
;
1
3
(
1
4
-
1
5
)
=
1
4
4
15
,驗證
1
3
(
1
4
-
1
5
)
=
1
3×4×5
=
4
42×5
=
1
4
4
15

(1)按照上述三個等式及其驗證過程中的基本思想,猜想
1
4
(
1
5
-
1
6
)
的變形結(jié)果并進行驗證.
(2)針對上述各式反映的規(guī)律,寫出用n(n為自然數(shù),且n≥1)表示的等式,不需要證明.

查看答案和解析>>

同步練習(xí)冊答案