【題目】已知:等腰△DEC,∠DEC=90°,DE=EC=3,已知等腰△AEB,∠AEB=90°,AE=BE=2.
(l)求證:△DEB≌△CEA;
(2)判斷BD與AC的關系,并說明理由.
(3)若∠DAE=90°,請直接寫出BC的長,BC= .
【答案】(1)詳見解析;(2)BD⊥AC,BD=AC,理由詳見解析;(3).
【解析】
(1)證明∠AEC=∠BED,根據(jù)SAS可得△DEB≌△CEA;
(2)證明△DEB≌△CEA,得出∠ACE=∠BDE,AC=BD,由三角形內(nèi)角和定理得∠CFB=∠DEC=90°,得出AC⊥BD;
(3)由AC⊥BD,可得AB2+CD2=AD2+BC2,求出AB2,CD2,AD2即可得出答案.
解:(1)證明:∵∠AEB+∠AED=∠DEC+∠AED,
∴∠AEC=∠BED,
在△DEB和△CEA中,
,
∴△DEB≌△CEA(SAS),
(2)解:BD⊥AC,BD=AC,理由如下:
∵△DEB≌△CEA,
∴∠ACE=∠BDE,AC=BD,
∵∠AND=∠CNE,如圖所示:
∴由三角形內(nèi)角和定理得:∠CFB=∠DEC=90°,
∴AC⊥BD.
(3)解:∵AC⊥BD,
∴DF2+CF2=DC2,AF2+BF2=AB2,
∴AB2+CD2=DF2+CF2+AF2+BF2=AD2+BC2,
∵∠DAE=90°,DE=3,AE=2,
∴AD2=DE2﹣AE2=9﹣4=5,
∵∠AEB=90°,AE=BE=2.
∴AB2=4+4=8,
∵∠DEC=90°,DE=EC=3,
∴DC2=9+9=18,
∴BC2=AB2+CD2﹣AD2=8+18﹣5=21,
∴BC=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】為增強公民的節(jié)約意識,合理利用天然氣資源,某市自月日起對市區(qū)民用管道天然氣價格進行調(diào)整,實行階梯式氣價,調(diào)整后的收費價格如表所示:
每月用氣量 | 單價(元) |
不超出的部分 | |
超出不超過的部分 | |
超出的部分 |
(1)若某用戶月份用氣量為,交費多少元?
(2)調(diào)價后每月支付燃氣費用(單位:元)與每月用氣量(單位:)的關系如圖所示,求與的解析式及的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.
(1)CD與BE相等?若相等,請證明;若不相等,請說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
(1)已知點M,N是線段AB的勾股分割點,若AM=2,MN=3,則BN=________;
(2)如圖2,在△ABC中,FG是中位線,點D,E是線段BC的勾股分割點,且EC>DE≥BD,連接AD,AE分別交FG于點M,N,求證:點M,N是線段FG的勾股分割點;
(3)如圖3,已知點M,N是線段AB的勾股分割點,MN>AM≥BN,四邊形AMDC,四邊形MNFE和四邊形NBHG均是正方形,點P在邊EF上,試探究S△ACN ,S△APB ,S△MBH的數(shù)量關系.
S△ACN=________;S△MBH=________;S△APB=________;S△ACN ,S△APB,S△MBH的數(shù)量關系是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,射線AM平分∠BAC.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡)作BC的中垂線,與AM相交于點G,連接BG、CG;
(2)在(1)條件下,∠BAC和∠BGC有何數(shù)量關系?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,點是斜邊的中點,作,交直線于點.
(1)若,求線段的長;
(2)當點在線段上時,設,,求關于的函數(shù)解析式,并寫出定義域;
(3)若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=-x2+2mx-m2+的頂點為P.
(1)求證:不論m取何值,點P始終在同一個反比例函數(shù)圖象上?
(2)若拋物線與x軸交于A、B兩點,當m為何值時,線段AB長等于8?
(3)該拋物線上是否存在一點Q,使得△OPQ是以點P為頂點的等腰直角三角形?若不存在,請說明理由;若存在,請求出m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com