我們知道:直角三角形斜邊上的中線等于斜邊的一半,說(shuō)明斜邊上的中線可把直角三角形分成兩個(gè)等腰三角形(圖①).又比如,頂角為36°的等腰三角形也能分成兩個(gè)等腰三角形(圖②).
(1)試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個(gè)等腰三角形嗎?
(2)△ABC中,有一內(nèi)角為36°,過(guò)某一頂點(diǎn)的直線將△ABC分成兩個(gè)等腰三角形,則滿(mǎn)足上述條件的不同形狀(相似的認(rèn)為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請(qǐng)你畫(huà)出來(lái).

【答案】分析:(1)圖3將108度的角分成72度和36度即可構(gòu)成36度、72度、72度和36度、36度、108度的兩個(gè)等腰三角形;
圖4中,第三個(gè)角為75度,將這個(gè)角分為35度和40度,即可構(gòu)成70度、70度、40度,和35度、35度、110度的兩個(gè)等腰三角形;
圖5中,第三個(gè)角為80度,可將75度的角分為50度、25度,即可構(gòu)成50度、50度、80度和25度、25度、130度的兩個(gè)等腰三角形;
(2)利用36度的角是底角,可以作出角分別為36度、36度+54度,54度和36度、18度、126度的三角形,將36度的角分為24度和12度,構(gòu)造等腰三角形,再進(jìn)行拼接,又可構(gòu)成三角為36度、12度、132度的三角形.
解答:解:(1)正確畫(huà)出圖③、④、⑤各得(2分).

(2)畫(huà)出第一種得(2分),第二種(1分),第三種(1分).
點(diǎn)評(píng):本題一方面考查了學(xué)生的動(dòng)手操作能力,另一方面考查了學(xué)生的空間想象能力,重視知識(shí)的發(fā)生過(guò)程,讓學(xué)生體驗(yàn)學(xué)習(xí)的過(guò)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、我們知道:直角三角形斜邊上的中線等于斜邊的一半,說(shuō)明斜邊上的中線可把直角三角形分成兩個(gè)等腰三角形(圖①).又比如,頂角為36°的等腰三角形也能分成兩個(gè)等腰三角形(圖②).
(1)試試看,你能把圖③、圖④、圖⑤中的三角形分成兩個(gè)等腰三角形嗎?
(2)△ABC中,有一內(nèi)角為36°,過(guò)某一頂點(diǎn)的直線將△ABC分成兩個(gè)等腰三角形,則滿(mǎn)足上述條件的不同形狀(相似的認(rèn)為是同一形狀)的△ABC最多有5種,除了圖②、圖③中的兩種,還有三種,請(qǐng)你畫(huà)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道,“直角三角形斜邊上的高線將三角形分成兩個(gè)與原三角形相似的直角三角形”用這一方法,將矩形ABCD分割成大小不同的七個(gè)相似直角三角形.按從大到小的順序編號(hào)為①至⑦(如圖),從而割成一副“三角七巧板”.已精英家教網(wǎng)知線段AB=1,∠BAC=θ.
(1)請(qǐng)用θ的三角函數(shù)表示線段BE的長(zhǎng)
 
;
(2)圖中與線段BE相等的線段是
 

(3)仔細(xì)觀察圖形,求出⑦中最短的直角邊DH的長(zhǎng).(用θ的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

通過(guò)學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解下列問(wèn)題:
(1)sad60°=
1
1
;
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知cosA=
4
5
,其中∠A為銳角,試求sanA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)習(xí)過(guò)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
1
2
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請(qǐng)直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)一模)通過(guò)學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值是一一對(duì)應(yīng)的,因此,兩條邊長(zhǎng)的比值與角的大小之間可以相互轉(zhuǎn)化.類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對(duì)記作canB,這時(shí)canB=
底邊
=
BC
AB
,容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義,解下列問(wèn)題:
(1)can30°=
3
3
;
(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案