【題目】如圖,等邊△ABE與正方形ABCD有一條共公邊,點(diǎn)E在正方形外,連結(jié)DE,則∠BED= °.
【答案】45°
【解析】
試題分析:根據(jù)正方形的性質(zhì),可得AB與AD的關(guān)系,∠BAD的度數(shù),根據(jù)等邊三角形的性質(zhì),可得AE與AB的關(guān)系,∠AEB的度數(shù),根據(jù)等腰三角形的性質(zhì),可得∠AED與∠ADE的關(guān)系,根據(jù)三角形的內(nèi)角和,可得∠AED的度數(shù),根據(jù)角的和差,可得答案.
解:∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵等邊三角形ABE,
∴AB=AE,∠BAE=∠AEB=60°,
∠DAE=∠BAD+∠BAE=90°+60°=150°,
AD=AE,
∴∠AEB=∠ABE=(180°﹣∠DAB)÷2=15°,
∴∠BED=∠AEB﹣∠AED=60°﹣15°=45°,
故答案為:45°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圓的半徑擴(kuò)大一倍,則它的相應(yīng)的圓內(nèi)接正n邊形的邊長與半徑之比( )
A. 擴(kuò)大了一倍 B. 擴(kuò)大了兩倍 C. 擴(kuò)大了四倍 D. 沒有變化
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(m,2018)與點(diǎn)B(2019,n)關(guān)于y軸對(duì)稱,則m+n的 值是( )
A. -1 B. 1 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的弦,∠OAB=45°,C是優(yōu)弧AB上的一點(diǎn),BD∥OA,交CA延長線于點(diǎn)D,連接BC.
(1)求證:BD是⊙O的切線;
(2)若AC=,∠CAB=75°,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知代數(shù)式x+2y的值是3,則代數(shù)式3x+6y+1的值是( )
A. 7 B. 4 C. 10 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是“東方之星”救援打撈現(xiàn)場(chǎng)圖,小紅據(jù)此構(gòu)造出一個(gè)如圖2所示的數(shù)學(xué)模型,已知:A、B、D三點(diǎn)在同一水平線上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求點(diǎn)B到AC的距離;
(2)求線段CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)P為對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E在射線BC上.
(1)填空:∠PBC= 度.
(2)若BE=t,連結(jié)PE、PC,則|PE+PC的最小值為 ,|PE﹣PC|的最大值是 (用含t的代數(shù)式表示);
(3)若點(diǎn)E 是直線AP與射線BC的交點(diǎn),當(dāng)△PCE為等腰三角形時(shí),求∠PEC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com