【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;

a<﹣1;其中結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】D

【解析】由拋物線的開口向下知a<0,

y軸的交點(diǎn)為在y軸的正半軸上,得c>0,

對(duì)稱軸為x= <1,a<02a+b<0,

而拋物線與x軸有兩個(gè)交點(diǎn), 4ac>0

當(dāng)x=2時(shí),y=4a+2b+c<0,當(dāng)x=1時(shí),a+b+c=2.

>2,4ac<8a,+8a>4ac

∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③ab+c<0.

由①,③得到2a+2c<2,由①,②得到2ac<4,4a2c<8,

上面兩個(gè)相加得到6a<6,∴a<1.故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=mx+3的圖象經(jīng)過點(diǎn)A(2,6),B(n,-3).求:

(1)m,n的值;

(2)OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某漁船向正東方向以12海里/時(shí)的速度航行,在A處測(cè)得島C在北偏東的60°方向,1小時(shí)后漁船航行到B處,測(cè)得島C在北偏東的30°方向,已知該島周圍10海里內(nèi)有暗礁.

(1)B處離島C有多遠(yuǎn)?

(2)如果漁船繼續(xù)向東航行,有無觸礁危險(xiǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長(zhǎng)為4為邊上一點(diǎn),過點(diǎn),交于點(diǎn),在右側(cè)作等邊三角形,記的距離為,的距離為,

(1),試求線段的長(zhǎng),并求m1、m2的值.

(2),用含的代數(shù)式表示,,并求在∠C的平分線上時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).

(1)求這個(gè)拋物線的解析式;

(2)如圖,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最。咳舸嬖,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)如圖,連接ACy軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),當(dāng)△PMN周長(zhǎng)取最小值時(shí),則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C是線段AB上一點(diǎn),分別以ACBC為邊在線段AB的同側(cè)作等邊ACDBCE,連結(jié)AEBD,相交于點(diǎn)F.

1)求證:AE=BD;

2)如圖2.固定BCE不動(dòng),將等邊ACD繞點(diǎn)C旋轉(zhuǎn)(ACDBCE不重疊),試問∠AFB的大小是否變化?請(qǐng)說明理由;

3)在ACD旋轉(zhuǎn)的過程中,以下結(jié)論:①CG=CH;② GF=HF; FC平分分∠GCH;④FC平分∠GFH;一定正確的有 (填寫序號(hào),不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠ABC+∠DCB90°,且BC2AD,以ABBC、DC為邊向外作正方形,其面積分別為S1、S2S3,若S14,S312,則S2的值為( 。

A.16B.24C.48D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《鄭州市城市生活垃圾分類管理辦法》已于2019121日起施行,為了解市民對(duì)垃圾分類的執(zhí)行程度,某數(shù)學(xué)興趣小組對(duì)部分市民進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果分為“A完全做到”“B基本做到”“C偶爾做到”“D很少做到四類,該小組繪制的統(tǒng)計(jì)圖如右:

1)圖中最大的扇形表示調(diào)查結(jié)果為 的市民占所有被調(diào)查市民的 %,這個(gè)扇形的圓心角為 °;

2)你從圖中還能得到哪些信息?(寫出一條即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案