如圖,點(diǎn)是半圓的半徑上的動點(diǎn),作.點(diǎn)是半圓上位于左側(cè)的點(diǎn),連結(jié)交線段,且

(1) 求證:是⊙O的切線.
(2) 若⊙O的半徑為,,設(shè)
①求關(guān)于的函數(shù)關(guān)系式.
②當(dāng)時(shí),求的值.
(1)證明見解析;(2)①y=x2+144(0≤x≤4),②.

試題分析:(1)要證PD是⊙O的切線只要證明∠PDO=90°即可;
(2)①分別用含有x,y的式子,表示OP2和PD2這樣便可得到y(tǒng)關(guān)于x的函數(shù)關(guān)系式;
②已知x的值,則可以根據(jù)關(guān)系式求得PD的值,已PC的值且PD=PE,從而可得到EC,BE的值,這樣便可求得tanB的值.
試題解析:(1)證明:連接OD.

∵OB=OD,
∴∠OBD=∠ODB.
∵PD=PE,
∴∠PDE=∠PED.
∠PDO=∠PDE+∠ODE
=∠PED+∠OBD
=∠BEC+∠OBD
=90°,
∴PD⊥OD.
∴PD是⊙O的切線.
(2)①連接OP.
在Rt△POC中,
OP2=OC2+PC2=x2+192.
在Rt△PDO中,
PD2=OP2-OD2=x2+144.
∴y=x2+144(0≤x≤4).
②當(dāng)x=時(shí),y=147,
∴PD=7,
∴EC=
∵CB=3,
∴在Rt△ECB中,tanB=
考點(diǎn): 1.二次函數(shù)綜合題;2.切線的判定;3.解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,把拋物線y=﹣x2+1向上平移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖像一定不經(jīng)過(    )
A.第一象限;B.第二象限;C.第三象限;D.第四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果拋物線y=mx²+(m-3)x-m+2經(jīng)過原點(diǎn),那么m的值等于(  )
A.0;B.1;C.2;D.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2﹣2mx+4m﹣8(1)當(dāng)x≤2時(shí),函數(shù)值y隨x的增大而減小,求m的取值范圍.(2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMN(M,N兩點(diǎn)在拋物線上),請問:△AMN的面積是與m無關(guān)的定值嗎?若是,請求出這個(gè)定值;若不是,請說明理由.(3)若拋物線y=x2﹣2mx+4m﹣8與x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,當(dāng)-5≤x≤0時(shí),下列說法正確的是( 。
A.有最小值-5、最大值0
B.有最小值-3、最大值6
C.有最小值0、最大值6
D.有最小值2、最大值6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圖是二次函數(shù)y=ax2+bx+c的圖象,則a、b、c滿足
A.a(chǎn)>0,b>0,c>0B.a(chǎn)>0,b<0,c>0
C.a(chǎn)>0,b>0,c<0D.a(chǎn)>0,b<0,c<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長;
(2)若△AED以每秒2個(gè)單位長度的速度沿DC向右平行移動,得到△A0E0D0,當(dāng)A0D0與BC重合時(shí)停止移動,設(shè)運(yùn)動時(shí)間為t秒,△A0E0D0與△BDC重疊的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動后得到△BEC,將△BEC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過程中,B的對應(yīng)點(diǎn)為B1,E的對應(yīng)點(diǎn)為E1,設(shè)直線B1E1與直線BE交于點(diǎn)P、與直線CB交于點(diǎn)Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某廣場有一噴水池,水從地面噴出,如圖,以水平地面為x軸,出水點(diǎn)為原點(diǎn),建立平面直角坐標(biāo)系,水在空中劃出的曲線是拋物線y=-x2+4x(單位:米)的一部分,則水噴出的最大高度是(  )
A.4米B.3米C.2米D.1米

查看答案和解析>>

同步練習(xí)冊答案