【題目】一個(gè)三位正整數(shù)N,各個(gè)數(shù)位上的數(shù)字互不相同且都不為0,若從它的百位、十位、個(gè)位上的數(shù)字任意選擇兩個(gè)數(shù)字組成兩位數(shù),所有這些兩位數(shù)的和等于這個(gè)三位數(shù)本身,則稱這樣的三位數(shù)N為“公主數(shù)”.例如:132,選擇百位數(shù)字1和十位數(shù)字3所組成的兩位數(shù)為:1331,選擇百位數(shù)字1和個(gè)位數(shù)字2組成的兩位數(shù)為:1221,選擇十位數(shù)字3和個(gè)位數(shù)字2所組成的兩位數(shù)為:3223,因?yàn)?/span>13+31+12+21+32+23=132,所以132是“公主數(shù)”.一個(gè)三位正整數(shù),若它的十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的和,則稱這樣的三位數(shù)為“伯伯?dāng)?shù)”.

(1)判斷123是不是“公主數(shù)”?請(qǐng)說明理由.

(2)證明:當(dāng)一個(gè)“伯伯?dāng)?shù)”是“公主數(shù)”時(shí),則z=2x

(3)若一個(gè)“伯伯?dāng)?shù)”與132的和能被13整除,求滿足條件的所有“伯伯?dāng)?shù)”.

【答案】(1)123不是“公主數(shù)”.(2)詳見解析;(3)這個(gè)“伯伯?dāng)?shù)”為154或297或583或440.

【解析】

(1)根據(jù)公主數(shù)的定義判斷即可;

(2)由題意 ,消去y即可解決問題;

(3)設(shè)伯伯?dāng)?shù),則yx+z,則有100x+10y+z+132=110x+11z+11×12=11(10x+z+12),由一個(gè)伯伯?dāng)?shù)132的和能被13整除,可得10x+z+12=13×213×313×513×4,求出整數(shù)解即可解決問題;

(1)解:因?yàn)?/span>13+31+12+21+32+23=132≠123,

所以123不是公主數(shù)”.

(2)證明:由題意

22(x+x+z+z)=100x+10(x+z)+z,

33z=66x

z=2x

(3)設(shè)伯伯?dāng)?shù),則yx+z,

100x+10y+z+132=110x+11z+11×12=11(10x+z+12),

∵一個(gè)伯伯?dāng)?shù)132的和能被13整除,

10x+z+12=13×213×313×513×4

∴這個(gè)伯伯?dāng)?shù)154297583440.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,某社會(huì)實(shí)踐活動(dòng)小組實(shí)地測(cè)量兩岸互相平行的一段河的寬度,在河的南岸邊點(diǎn)A處,測(cè)得河的北岸邊點(diǎn)B在其北偏東45°方向,然后向西走60m到達(dá)C點(diǎn),測(cè)得點(diǎn)B在點(diǎn)C的北偏東60°方向,如圖2.

(1)求∠CBA的度數(shù).

(2)求出這段河的寬(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,過圓心OAB的垂線,與弦AC的延長線交于點(diǎn)D,點(diǎn)EOD

(1)求證:CE是半圓的切線;

(2)若CD=10,,求半圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】奧林匹克公園觀光塔由五座高度不等、錯(cuò)落有致的獨(dú)立塔組成.在綜合實(shí)踐活動(dòng)課中,某小組的同學(xué)決定利用測(cè)角儀測(cè)量這五座塔中最高塔的高度(測(cè)角儀高度忽略不計(jì)).他們的操作方法如下:如圖,他們先在B處測(cè)得最高塔塔頂A的仰角為45°,然后向最高塔的塔基直行90米到達(dá)C處,再次測(cè)得最高塔塔頂A的仰角為58°.請(qǐng)幫助他們計(jì)算出最高塔的高度AD約為多少米.(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我校剛剛結(jié)束的繽紛體育節(jié)上,初三年級(jí)參加了60m迎面接力比賽.假設(shè)每名同學(xué)在跑步過程中是勻速的,且交接棒的時(shí)間忽略不計(jì),如圖是AB兩班的路程差y(米)與比賽開始至A班先結(jié)束第二棒的時(shí)間x(秒)之間的函數(shù)圖象.則B班第二棒的速度為_____/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船正以60海里/小時(shí)的速度向正東方向航行,在A處測(cè)得島礁P在東北方向上,繼續(xù)航行1.5小時(shí)后到達(dá)B處,此時(shí)測(cè)得島礁P在北偏東30°方向,同時(shí)測(cè)得島礁P正東方向上的避風(fēng)港M在北偏東60°方向.為了在臺(tái)風(fēng)到來之前用最短時(shí)間到達(dá)M處,漁船立刻加速以75海里/小時(shí)的速度繼續(xù)航行_____小時(shí)即可到達(dá).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x0)的圖象上,ABO=30°,則=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線交于點(diǎn),分別與軸、軸交于點(diǎn)、

1)分別求出點(diǎn)、的坐標(biāo);

2)若是線段上的點(diǎn),且的面積為12,求直線的函數(shù)表達(dá)式;

3)在(2)的條件下,設(shè)是射線上的點(diǎn).

①如圖2,過點(diǎn),且使四邊形為菱形,請(qǐng)直接寫出點(diǎn)的坐標(biāo);

②在平面內(nèi)是否存在其它點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017浙江省寧波市)在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題,某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫了下面這道題,請(qǐng)你來解一解:

如圖,將矩形ABCD的四邊BA、CBDC、AD分別延長至E、F、GH,使得AE=CG,BF=DH,連接EFFG,GH,HE

(1)求證:四邊形EFGH為平行四邊形;

(2)若矩形ABCD是邊長為1的正方形,且∠FEB=45°,tanAEH=2,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案