【題目】如圖,邊長為6的正方形ABCD中,E,F分別是ADAB上的點,APBEP為垂足.

1)如圖1,AF=BFAE=,點T是射線PF上的一個動點,當△ABT為直角三角形時,求AT的長;

2)如圖2,若AE=AF,連接CP,求證:CPFP

【答案】1)當為直角三角形時,的長為3;(2)詳見解析

【解析】

1)先根據(jù)AEAB長求出∠ABE=30°,分三種情況:當點的上方,,②當點的下方,,時,分別求出AT長即可;

2)先證∠1=3,根據(jù)三角函數(shù)知識得到,再證,得到∠5=∠6,從而證明CP⊥FP.

解:(1)在正方形中,可得,

中,,

分三種情況:

①當點的上方,

顯然此時點和點重合,即;

②當點的下方,,如圖①所示,

中,由,可得:,

為圓心長為直徑作圓,交射線于點,可知,

,是直徑,

,

∴四邊形是矩形,

,

中,

,

③當時,如圖②所示,

中,,,

中:

綜上所述:當為直角三角形時,的長為3;

2)如圖③所示,

在正方形中,可得,,,

,

中,,易知,

,

,

,

中可得,

,

,

,

,

,

,

,即,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線ABx軸交于點B,與y軸交于點A,直線AB與反比例函數(shù)ym0)在第一象限的圖象交于點C、點D,其中點C的坐標為(1,8),點D的坐標為(4,n).

1)分別求mn的值;

2)連接OD,求△ADO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將從1開始的連續(xù)自然數(shù)按圖規(guī)律排列:

1

2

3

4

1

1

2

3

4

2

8

7

6

5

3

9

10

11

12

4

16

15

14

13

規(guī)定位于第行,第列的自然數(shù)10記為,自然數(shù)15記為按此規(guī)律,自然數(shù)2018記為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點分別是邊上的兩點,且分別交.下列結(jié)論:①;②平分;③;④.其中正確的結(jié)論是( )

A.②③④B.①④C.①②③D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角OAB的斜邊OBx軸上,且OB4,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點C,交AB于點D,則點D坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax22ax+c(a0)的圖象過點A(3,m)

(1)a=﹣1,m0時,求拋物線的頂點坐標_____;

(2)如圖,直線lykx+c(k0)交拋物線于B,C兩點,點Q(x,y)是拋物線上點B,C之間的一個動點,作QDx軸交直線l于點D,作QEy軸于點E,連接DE.設(shè)∠QEDβ,當2x4時,β恰好滿足30°≤β60°,a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三位數(shù)兩個數(shù)位上數(shù)字的和等于另一個數(shù)位上的數(shù)字,則稱這個三位數(shù)為“均衡三位數(shù)”.現(xiàn)從1,2,3,4,55個數(shù)字中任取三個數(shù)字,組成無重復數(shù)字且百位數(shù)字、十位數(shù)字、個位數(shù)字依次增大的三位數(shù).

1)請列舉出所有可能得到的三位數(shù);

2)小明和小亮玩一個游戲,游戲規(guī)則如下:若(1)中組成的三位數(shù)是“均衡三位數(shù)”,則小明勝;否則小亮勝.這個游戲公平嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點C是線段AB上一點,ACAB,BC為⊙O的直徑.

1)在圖1直徑BC上方的圓弧上找一點P,使得PAPB;(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

2)連接PA,求證:PA是⊙O的切線;

3)在(1)的條件下,連接PC、PB,∠PAB的平分線分別交PC、PB于點D、E.求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等腰直角三角形,∠ACB=90°,BC=AC,把ABC繞點A按順時針方向旋轉(zhuǎn)45°后得到AB’C’,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是___________ (結(jié)果保留π)

查看答案和解析>>

同步練習冊答案