如圖,已知AB切⊙O于B,OA交⊙O于C,又知△OBA的面積為6cm2,⊙O的半徑為2cm,求AC的長.

答案:略
解析:

AB為⊙O的切線且切點為B

OBAB,

∴△OAB為直角三角形.

又∵⊙O的半徑為2cm.即OB=2cm

,即AB=6cm

ACx(cm),則OA=(2x)cm,

,得

,(舍去)


提示:

AB切⊙OB,則OBAB,△AOB是直角三角形,應用勾股定理可求出OA的長,在此基礎上便可求出AC的長.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1998•江西)如圖,已知AB切⊙O于點B,AB的垂直平分線CF交AB于點C,交⊙O于D、E.設點M是射線CF上的任意一點,CM=a,連接AM,若CB=3,DE=8.
(1)求CD的長;
(2)當M在線段DE(不含端點E)上時,延長AM交⊙O于點N,連接NE,若△ACM∽△NEM,求證:EN=AB;
(3)當M在射線EF上時,若a為小于17的正數(shù),問是否存在這樣的a,使得AM與⊙O相切?若存在,求出a的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB是⊙0的直徑,AC切⊙O于點A,連接CO并延長交⊙0于點D、E,連接BD并延長交邊AC于點F.
(1)求證:AD•AC=DC•EA;
(2)若AC=nAB(n∈N),求tan∠CDF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

作业宝如圖,已知AB切⊙O于點B,AB的垂直平分線CF交AB于點C,交⊙O于D、E.設點M是射線CF上的任意一點,CM=a,連接AM,若CB=3,DE=8.
(1)求CD的長;
(2)當M在線段DE(不含端點E)上時,延長AM交⊙O于點N,連接NE,若△ACM∽△NEM,求證:EN=AB;
(3)當M在射線EF上時,若a為小于17的正數(shù),問是否存在這樣的a,使得AM與⊙O相切?若存在,求出a的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:1998年江西省中考數(shù)學試卷(解析版) 題型:解答題

如圖,已知AB切⊙O于點B,AB的垂直平分線CF交AB于點C,交⊙O于D、E.設點M是射線CF上的任意一點,CM=a,連接AM,若CB=3,DE=8.
(1)求CD的長;
(2)當M在線段DE(不含端點E)上時,延長AM交⊙O于點N,連接NE,若△ACM∽△NEM,求證:EN=AB;
(3)當M在射線EF上時,若a為小于17的正數(shù),問是否存在這樣的a,使得AM與⊙O相切?若存在,求出a的值;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案