(2004•南平)已知:如圖,A是半徑為2的⊙O上的一點(diǎn),P是OA延長(zhǎng)線上的一動(dòng)點(diǎn),過P作⊙O的切線,切點(diǎn)為B,設(shè)PA=m,PB=n.
(1)當(dāng)n=4時(shí),求m的值;
(2)⊙O上是否存在點(diǎn)C,使△PBC為等邊三角形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說明理由;
(3)當(dāng)m為何值時(shí),⊙O上存在唯一點(diǎn)M和PB構(gòu)成以PB為底的等腰三角形?并直接答出:此時(shí)⊙O上能與PB構(gòu)成等腰三角形的點(diǎn)共有幾個(gè)?

【答案】分析:(1)此題可有兩種解法:①連接OB,利用勾股定理求解,②延長(zhǎng)PO交⊙O于另外一點(diǎn),利用切割線定理求解;
(2)若△PBC是等邊三角形,則必有PB=PC,由于PB是⊙O的切線,且C在⊙O上,那么若存在符合條件的C點(diǎn),則PC必與⊙O相切,且切點(diǎn)為C(切線長(zhǎng)定理).若△PBC是等邊三角形,則∠BPC=60°,∠BPO=30°,可連接OB,在Rt△OBP中,通過解直角三角形即可求得AP的長(zhǎng)即m的值;
(3)若存在等腰△PBM,且以PB為底,那么M點(diǎn)必在線段PB的垂直平分線上,而⊙O上存在唯一點(diǎn)M,那么線段PB的中垂線與⊙O相切,且切點(diǎn)為M.連接OM,易證得四邊形OBDM是正方形,則BP=2BD=2OB=4,即n=4,在Rt△OBP中,利用勾股定理即可求得OP的長(zhǎng),進(jìn)而可得到AP即m的值.
在上面已經(jīng)求得PB=4,若M能與PB構(gòu)成等腰三角形(PB不一定是底邊),可有兩種情況考慮:
①BM=PB=4,由于⊙O的半徑為2,那么過B作⊙O的直徑BM,此時(shí)M點(diǎn)就符合題意;
②PB=PM=4,此種情況與(2)題相同,此時(shí)M、C重合,即PM與⊙O相切,且切點(diǎn)為M.
由于BM=PM在上面已經(jīng)討論過,所以能與PB構(gòu)成等腰三角形的共有3點(diǎn).
解答:解:(1)解法一:連接OB.

∵PB切⊙O于B,
∴∠OBP=90°,
∴PO2=PB2+OB2,
∵PO=2+m,PB=n,OB=2,
∴(2+m)2=n2+22m2+4m=n2;
n=4時(shí),解,得:
(舍去),
∴m的值為
解法二:延長(zhǎng)PO交⊙O于Q,PAQ為⊙O割線.
又∵PB切⊙O于B,
∴PB2=PA•PQ,(1分)
∵PB=n,PA=m,PO=m+4,
∴n2=m2+4m,(3分)
當(dāng)n=4時(shí),解得(舍去),,
∴m的值為.(5分)

(2)存在點(diǎn)C,使△PBC為等邊三角形;(6分)
當(dāng)∠OPB=30°時(shí),過點(diǎn)P作⊙O的另一條切線PC,C為切點(diǎn),

∴PB=PC,∠OPB=∠OPC,
∴∠BPC=60°,∴△PBC為等邊三角形;(7分)
連接OB,∠OBP=90°,OB=2,得OP=4,(8分)
∴m=PA=OP-OA=2.(9分)

(3)如圖,設(shè)EF為線段PB的垂直平分線,垂足為D,當(dāng)EF與⊙O相切于點(diǎn)M時(shí),M符合要求;(10分)
連接OB、OM,易得四邊形OMDB為正方形,

∴BD=DM=OM=2,
∴n=PB=4.(12分)
由(1)得n=4時(shí),m=,
∴當(dāng)m=時(shí),⊙O上存在唯一點(diǎn)M和PB構(gòu)成以PB為底的等腰三角形,(13分)
此時(shí)⊙O上共有3個(gè)點(diǎn)能與PB構(gòu)成等腰三角形.(14分)
(這3點(diǎn)分別是M,M1,M2.其中M是PB中垂線與⊙O的切點(diǎn),M1是延長(zhǎng)BO與⊙O的交點(diǎn),M2是點(diǎn)B關(guān)于OP的對(duì)稱點(diǎn))
點(diǎn)評(píng):此題考查了勾股定理、切割線定理、切線長(zhǎng)定理、等腰三角形和等邊三角形的判定、切線的性質(zhì)等重要知識(shí)點(diǎn),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(06)(解析版) 題型:解答題

(2004•南平)已知:如圖,在平行四邊形ABCD中,連接BD.
(1)求作:∠A的平分線AE交BC于E,交BD于F;(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)求證:①AB=BE;


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(03)(解析版) 題型:填空題

(2004•南平)已知:如圖,在△ABC中,BC=8,AD是BC邊上的高,D為垂足,將△ABC折疊使點(diǎn)A與點(diǎn)D重合,則折痕EF的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《尺規(guī)作圖》(01)(解析版) 題型:解答題

(2004•南平)已知:如圖,在平行四邊形ABCD中,連接BD.
(1)求作:∠A的平分線AE交BC于E,交BD于F;(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)求證:①AB=BE;


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年福建省南平市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2004•南平)已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB是⊙O的直徑.若再增加一個(gè)條件,就可使四邊形ABCD成為等腰梯形.你所增加的條件是:   
(只寫出一個(gè)條件,圖中不再增加其他的字母和線段).

查看答案和解析>>

同步練習(xí)冊(cè)答案