如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
(1)求這條拋物線的解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PEAC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)探究:若點(diǎn)Q是拋物線對稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
(1)∵x2-2x-8=0,∴(x-4)(x+2)=0.
∴x1=4,x2=-2.
∴A(4,0),B(-2,0).
又∵拋物線經(jīng)過點(diǎn)A、B、C,設(shè)拋物線解析式為y=ax2+bx+c(a≠0),
c=4
16a+4b+c=0
4a-2b+c=0

a=-
1
2
b=1
c=4

∴所求拋物線的解析式為y=-
1
2
x2+x+4.

(2)設(shè)P點(diǎn)坐標(biāo)為(m,0),過點(diǎn)E作EG⊥x軸于點(diǎn)G.
∵點(diǎn)B坐標(biāo)為(-2,0),點(diǎn)A坐標(biāo)(4,0),
∴AB=6,BP=m+2.
∵PEAC,
∴△BPE△BAC.
BP
AB
=
EG
CO

EG
4
=
m+2
6

∴EG=
2m+4
3

∴S△CPE=S△CBP-S△EBP
=
1
2
BP•CO-
1
2
BP•EG
∴S△CPE=
1
2
(m+2)(4-
2m+4
3

=-
1
3
m2+
2
3
m+
8
3

∴S△CPE=-
1
3
(m-1)2+3.
又∵-2≤m≤4,
∴當(dāng)m=1時(shí),S△CPE有最大值3.
此時(shí)P點(diǎn)的坐標(biāo)為(1,0).

(3)存在Q點(diǎn),
∵BC=2
5

設(shè)Q(1,n),
當(dāng)BQ=CQ時(shí),
則32+n2=12+(n-4)2,
解得:n=1,
即Q1(1,1);
當(dāng)BC=BQ=2
5
時(shí),9+n2=20,
解得:n=±
11

∴Q2(1,
11
),Q3(1,-
11
);
當(dāng)BC=CQ=2
5
時(shí),1+(n-4)2=20,
解得:n=4±
19
,
∴Q4(1,4+
19
),Q5(1,4-
19
).
綜上可得:坐標(biāo)為Q1(1,1),Q2(1,
11
),Q3(1,-
11
),Q4(1,4+
19
),Q5(1,4-
19
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對稱軸為直線x=-1,B(1,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(2)在拋物線對稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,-3),且頂點(diǎn)P的坐標(biāo)為(1,-4),
(1)求這個(gè)函數(shù)的關(guān)系式;
(2)試問x為何值時(shí),函數(shù)y的值大于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某地一古城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個(gè)門洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c(diǎn)建立直角坐標(biāo)系,例如圖:以AB的中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出y>0時(shí),x的取值范圍______;
(2)寫出y隨x的增大而減小的自變量x的取值范圍______;
(3)求函數(shù)y=ax2+bx+c的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2-x+a與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其頂點(diǎn)在直線y=-2x上.
(1)求a的值;
(2)求A,B的坐標(biāo);
(3)以AC,CB為一組鄰邊作?ACBD,則點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′是否在該拋物線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直線y=-
1
3
x+1
分別交x軸、y軸于A、B兩點(diǎn),△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得到△COD,拋物線y=ax2+bx+c經(jīng)過A、C、D三點(diǎn).
(1)寫出點(diǎn)A、B、C、D的坐標(biāo);
(2)求經(jīng)過A、C、D三點(diǎn)的拋物線表達(dá)式,并求拋物線頂點(diǎn)G的坐標(biāo);
(3)在直線BG上是否存在點(diǎn)Q,使得以點(diǎn)A、B、Q為頂點(diǎn)的三角形與△COD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=mx2-(m+5)x+5.
(1)求證:它的圖象與x軸必有交點(diǎn),且過x軸上一定點(diǎn);
(2)這條拋物線與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,過(1)中定點(diǎn)的直線L;y=x+k交y軸于點(diǎn)D,且AB=4,圓心在直線L上的⊙M為A、B兩點(diǎn),求拋物線和直線的關(guān)系式,弦AB與弧
AB
圍成的弓形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,根據(jù)圖形寫出一個(gè)符合圖象的二次函數(shù)表達(dá)式:______.

查看答案和解析>>

同步練習(xí)冊答案