【題目】如圖,四邊形ABCD是平行四邊形,下列說法不正確的是( )
A. 當(dāng)AC=BD時,四邊形ABCD是矩形
B. 當(dāng)AB=BC時,四邊形ABCD是菱形
C. 當(dāng)AC⊥BD時,四邊形ABCD是菱形
D. 當(dāng)∠DAB=90°時,四邊形ABCD是正方形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師給出了如下問題:如圖,∠AOB=80°,OC平分∠AOB,若∠BOD=20°.
(1)請你補(bǔ)全圖形,并求∠COD的度數(shù);
(2)若∠BOD=其他條件不變,請直接寫出∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】巴蜀中學(xué)2017春季運(yùn)動會的開幕式精彩紛呈,主要分為以下幾個類型:A文藝范、B動漫潮、C學(xué)院派、D民族風(fēng),為了解未能參加運(yùn)動會的初三學(xué)子對開幕式類型的喜好情況,學(xué)生處在初三年級隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將他們喜歡的種類繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)請補(bǔ)全折線統(tǒng)計圖,并求出“動漫潮”所在扇形的圓心角度數(shù).
(2)據(jù)統(tǒng)計,在被調(diào)查的學(xué)生中,喜歡“文藝范”類型的僅有2名住讀生,其余均為走讀生,初二年級欲從喜歡“文藝范”的這幾名同學(xué)中隨機(jī)抽取兩名同學(xué)去觀摩“文明禮儀大賽”視頻,用列表法或樹狀圖的方法求出所選的兩名同學(xué)都是走讀生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,面積為6cm2的△ABC紙片沿BC方向平移至△DEF的位置,平移的距離是BC長的2倍,則△ABC紙片掃過的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90,∠AOB=30,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【1】求點B的坐標(biāo)
【2】求證:四邊形ABCE是平行四邊形;
【3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“父母恩深重,恩憐無歇時”,每年5月的第二個星期日即為母親節(jié),節(jié)日前夕巴蜀中學(xué)學(xué)生會計劃采購一批鮮花禮盒贈送給媽媽們.
(1)經(jīng)過和花店賣家議價,可在原標(biāo)價的基礎(chǔ)上打八折購進(jìn),若在花店購買80個禮盒最多花費(fèi)7680元,請求出每個禮盒在花店的最高標(biāo)價;(用不等式解答)
(2)后來學(xué)生會了解到通過“大眾點評”或“美團(tuán)”同城配送會在(1)中花店最高售價的基礎(chǔ)上降價25%,學(xué)生會計劃在這兩個網(wǎng)站上分別購買相同數(shù)量的禮盒,但實際購買過程中,“大眾點評”網(wǎng)上的購買價格比原有價格上漲 m%,購買數(shù)量和原計劃一樣:“美團(tuán)”網(wǎng)上的購買價格比原有價格下降了 m元,購買數(shù)量在原計劃基礎(chǔ)上增加15m%,最終,在兩個網(wǎng)站的實際消費(fèi)總額比原計劃的預(yù)算總額增加了 m%,求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知線段,點C為線段AB上的一動點,點D、E分別是AC和BC中點.
若,求DE的長;
試說明無論AC取何值不超過,DE的長不變;
如圖2,已知,過角的內(nèi)部一點C畫射線OC,若OD、OE分別平分和,試說明的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線EF與AB、CD分別相交于E、F兩點,EP平分∠AEF,過點F作FP⊥EP,若∠PEF=30°,則∠PFC等于( )
A.30°
B.45°
C.60°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中有三點、、,請回答如下問題:
(1)在坐標(biāo)系內(nèi)描出點的位置:
(2)求出以三點為頂點的三角形的面積;
(3)在軸上是否存在點,使以三點為頂點的三角形的面積為10,若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com