(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別是A(-2,5),B(-3,-1),C(1,-1),在第一象限內(nèi)找一點(diǎn)D,使四邊形ABCD是平行四邊形,那么點(diǎn)D的坐標(biāo)是   
【答案】分析:連接AB,BC,運(yùn)用平行四邊形性質(zhì),可知AD∥BC,所以點(diǎn)D的縱坐標(biāo)是5,再跟BC間的距離即可推導(dǎo)出點(diǎn)D的縱坐標(biāo).
解答:解:由平行四邊形的性質(zhì),可知D點(diǎn)的縱坐標(biāo)一定是5;
又由C點(diǎn)相對(duì)于B點(diǎn)橫坐標(biāo)移動(dòng)了1-(-3)=4,故可得點(diǎn)D橫坐標(biāo)為-2+4=2,
即頂點(diǎn)C的坐標(biāo)(2,5).
點(diǎn)評(píng):本題主要是對(duì)平行四邊形的性質(zhì)與點(diǎn)的坐標(biāo)的表示等知識(shí)的直接考查,同時(shí)考查了數(shù)形結(jié)合思想,題目的條件既有數(shù)又有形,解決問(wèn)題的方法也要既依托數(shù)也依托形,體現(xiàn)了數(shù)形的緊密結(jié)合,但本題對(duì)學(xué)生能力的要求并不高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年文星鎮(zhèn)中考模擬試卷(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過(guò)該隧道?通過(guò)計(jì)算說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過(guò)點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過(guò)程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過(guò)點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說(shuō)明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案