【答案】
分析:(1)若⊙O與EC相切,且切點為D,可過D作EC的垂線,此垂線與AC的交點即為所求的O點.
(2)由(1)知OD⊥EC,則∠ODA、∠E同為∠ADE的余角,因此∠E=∠ODA=∠OAD,而AD∥BC,可得∠OAD=∠ACB,等量代換后即可證得∠E=∠ACB.
(3)由(2)證得∠E=∠ACB,即tan∠E=tan∠DAC=
,那么BC=
AB;由于AD∥BC,易證得△EAD∽△EBC,可用AB表示出AE、BC的長,根據(jù)相似三角形所得比例線段即可求出AB的長,進而可得到BC的值.
解答:(1)解:(O即為AD中垂線與AC的交點)或(過D點作EC的垂線與AC的交點等).
能見作圖痕跡,作圖基本準(zhǔn)確即可,漏標(biāo)O可不扣分(2分)
(2)證明:連接OD.∵AD∥BC,∠B=90°,∴∠EAD=90°.
∴∠E+∠EDA=90°,即∠E=90°-∠EDA.
又∵圓O與EC相切于D點,∴OD⊥EC.
∴∠EDA+∠ODA=90°,即∠ODA=90°-∠EDA.
∴∠E=∠ODA;(3分)
(說明:任得出一個角相等都評1分)
又∵OD=OA,∴∠DAC=∠ODA,∴∠DAC=∠E. (4分)
∵AD∥BC,∴∠DAC=∠ACB,∴∠E=∠ACB. (5分)
(3)解:Rt△DEA中,tanE=
,又tanE=tan∠DAC=
,
∵AD=1,∴EA=
. (6分)
Rt△ABC中,tan∠ACB=
,
又∠DAC=∠ACB,∴tan∠ACB=tan∠DAC.
∴
=
,∴可設(shè)AB=
x,BC=2x,
∵AD∥BC,∴Rt△EAD∽Rt△EBC. (7分)
∴
=
,即
=
.
∴x=1,
∴BC=2x=2. (8分)
點評:此題主要考查了切線的性質(zhì)、直角三角形的性質(zhì)、相似三角形的判斷和性質(zhì)等重要知識,能夠準(zhǔn)確的判斷出O點的位置,是解答此題的關(guān)鍵.