【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.

(1)求證:△BAD≌△CAE;

(2)請判斷BD、CE有何大小、位置關(guān)系,并證明.

【答案】(1)詳見解析;(2)BD=CE,BD⊥CE.

【解析】

(1)通過邊角邊的證明方法找出相應的邊角對應關(guān)系即可.

(2)根據(jù)第一問得大小關(guān)系,再求出∠DBC+∠DCB=90°即可得位置關(guān)系.

證明:(1)∵∠BAC=∠DAE=90°,

∴∠BAC+∠CAD=∠EAD+∠CAD,

∴∠BAD=∠CAE,

△BAD△CAE中,

∴△BAD≌△CAE(SAS).

(2)BD=CE,BD⊥CE,理由如下:

由(1)知,△BAD≌△CAE,

∴BD=CE;

∵△BAD≌△CAE,

∴∠ABD=∠ACE,

∵∠ABD+∠DBC=45°,

∴∠ACE+∠DBC=45°,

∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,

BD⊥CE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形 ABCD 中,AB=AD,AC=5,DAB=DCB=90°, 則四邊形 ABCD 的面積為(

A. 15 B. 14.5 C. 13 D. 12.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015本溪,第9題,3分)如圖,在平面直角坐標系中,直線ABx軸交于點A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點O的對應點C恰好落在雙曲線)上,則k的值為( 。

A. 4 B. ﹣2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與雙曲線交于兩點,且點的橫坐標為

1)求的值;

2)若雙曲線上一點的縱坐標為8,求的面積;

3)過原點的另一條直線交雙曲線兩點(點在第一象限),若由點為頂點組成的四邊形面積為,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BD平分∠ABC,AE⊥BD于點O,交BC于點E,AD∥BC,連接CD.
(1)求證:AO=EO;
(2)若AE是△ABC的中線,則四邊形AECD是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC⊥BC,AC=BC=4,以AC為直徑作半圓,圓心為點O;以點C為圓心,BC為半徑作 .過點O作BC的平行線交兩弧于點D、E,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在地面上有兩根等長的立柱AB,CD,它們之間懸掛了一根拋物線形狀的繩子,按照圖中的直角坐標系,這條繩子可以用y= x2 x+3表示
(1)求這條繩子最低點離地面的距離;
(2)現(xiàn)由于實際需要,要在兩根立柱之間再加一根立柱EF對繩子進行支撐(如圖②),已知立柱EF到AB距離為3m,兩旁的繩子也是拋物線形狀,且立柱EF左側(cè)繩子的最低點到EF的距離為1m,到地面的距離為1.8m,求立柱EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅游景點的門票價格如下表:

購票人數(shù)(單位人)

1﹣50

51﹣100

100以上

每人門票價(單位元)

80

75

70

某旅行社計劃帶甲、乙兩個旅行團共100多人計劃去游覽該景點,其中甲旅行團人數(shù)少于50人,乙旅行團人數(shù)有50 多人但不足100人,如果兩旅行團都以各自團體為單位單獨購票,則一共支付7965元;如果兩旅行團聯(lián)合起來作為一個團體購票,則只管花費7210元.間兩旅行團各有多少人?

查看答案和解析>>

同步練習冊答案