(2013•宛城區(qū)一模)如圖,已知△ABC,按如下步驟作圖:
①分別以A,C為圓心,以大于
1
2
AC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M和N;
②作直線MN,分別交于AB,AC于點(diǎn)D,O;
③過C作CE∥AB交MN于點(diǎn)E,連接AE,CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),tan∠DAO=
3
4
3
4
分析:(1)首先根據(jù)作法可知:直線DE是線段AC的垂直平分線進(jìn)而得到AC⊥DE,即∠AOD=∠COE=90°,且AD=CD,AO=CO,然后證明△AOD≌△COE,進(jìn)而得到OD=OE,從而可判定四邊形ADCE是菱形;
(2)首先根據(jù)菱形的性質(zhì)可得AC⊥DE,AO=CO,然后證明DO=
1
2
BC=3,再利用勾股定理計(jì)算出AO的長(zhǎng),進(jìn)而得到答案.
解答:(1)證明:由作法可知:直線DE是線段AC的垂直平分線,
∴AC⊥DE,即∠AOD=∠COE=90°,且AD=CD,AO=CO.
又∵CE∥AB,
∴∠ADO=∠CEO.
在△ADO和△CEO中,
AO=CO
∠AOD=∠COE
∠ADO=∠CEO
,
∴△AOD≌△COE(AAS).
∴OD=OE.
∴四邊形ADCE是平行四邊形.
又AD=CD,
∴四邊形ADCE是菱形.

(2)解:∵四邊形ADCE是菱形,
∴AC⊥DE,
∴∠AOD=90°,
∵∠ACB=90°,
∴DC∥CB,
∴△ADO∽△ABC,
AO
AC
=
DO
CB
=
1
2
,
∵BC=6,
∴DO=3,
∵AD=DC,AO=CO,△ADC的周長(zhǎng)為18,
∴AD+AO=9,
設(shè)AO=x,則AD=9-x,
(9-x)2=32+x2,
解得:x=4,
∴tan∠DAO=
3
4

故答案為:
3
4
點(diǎn)評(píng):此題主要考查了菱形的判定與性質(zhì),以及勾股定理的應(yīng)用,關(guān)鍵是掌握線段垂直平分線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宛城區(qū)一模)PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,富含大量的有毒、有害物質(zhì),對(duì)人體健康和大氣環(huán)境質(zhì)量的影響很大,是導(dǎo)致黑肺和霧霾天氣的主要兇手.將2.5微米換算成你熟悉的單位米(1米=1000000微米),用科學(xué)記數(shù)法表示正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宛城區(qū)一模)某校九年級(jí)參加了“維護(hù)小區(qū)周邊環(huán)境”、“維護(hù)繁華街道衛(wèi)生”、“義務(wù)指路”等志愿者活動(dòng),如圖是根據(jù)該校九年級(jí)六個(gè)班的同學(xué)某天“義務(wù)指路”總?cè)舜嗡L制的折線統(tǒng)計(jì)圖,則關(guān)于這六個(gè)數(shù)據(jù)中,下列說法正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宛城區(qū)一模)某幾何體的三視圖如圖所示,其中主視圖和左視圖均為邊長(zhǎng)為2的等邊三角形,則該幾何體的表面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宛城區(qū)一模)點(diǎn)A,B均在由邊長(zhǎng)為1的相同小正方形組成的網(wǎng)格的格點(diǎn)上,建立平面直角坐標(biāo)系如圖所示,若P是x軸上使得|PA-PB|的值最大的點(diǎn),Q是y軸上使得QA+QB的值最小的點(diǎn),則OP+OQ=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•宛城區(qū)一模)計(jì)算:(-1)2013+
12
-4sin60°+(-
1
3
0=
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案