在平面直角坐標系中,將拋物線繞著原點旋轉180°,所得拋物線的解析式是(   ).
A.y=-(x-1)2-2B.y=-(x+1)2-2
C.D.
A

試題分析:先將原拋物線化為頂點式,易得出與y軸交點,繞與y軸交點旋轉180°,那么根據(jù)中心對稱的性質(zhì),可得旋轉后的拋物線的頂點坐標,即可求得解析式.
解:由原拋物線解析式可變?yōu)椋?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823031003409633.png" style="vertical-align:middle;" />,
∴頂點坐標為(-1,2),
又由拋物線繞著原點旋轉180°,
∴新的拋物線的頂點坐標與原拋物線的頂點坐標關于點原點中心對稱,
∴新的拋物線的頂點坐標為(1,-2),
∴新的拋物線解析式為:
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

將拋物線向左平移個單位長度,使之過點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=一x2+ax+b圖象與軸交于,兩點,且與軸交于點.

(1)則的形狀為                 
(2)在此拋物線上一動點,使得以四點為頂點的四邊形是梯形,則點的坐標為                     .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點,且與y軸交于點C.

(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關系式及點C的坐標;
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(不與A、C重合)經(jīng)過A、E、O三點的圓交直線AB于點F,當△OEF的面積取得最小值時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(6,0)、B(0,-4).

(1)求該拋物線的解析式;
(2)若拋物線對稱軸與x軸交于點C,連接BC,點P在拋物線對稱軸上,使△PBC為等腰三角形,請寫出符合條件的所有點P坐標.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線與x軸交于點A(1,0),B(3,0),且過點C(0,﹣3).

(1)求拋物線的解析式和頂點坐標;
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在直線y=﹣x上,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某玩具批發(fā)商銷售每件進價為40元的玩具,市場調(diào)查發(fā)現(xiàn),若以每件50元的價格銷售,平均每天銷售90件,單價每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關系式為         ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關系式;
(3)物價部門規(guī)定每件售價不得高于55元,當每件玩具的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小敏在今年的校運動會跳遠比賽中跳出了滿意一跳,函數(shù)(的單位:秒,的單位:米)可以描述他跳躍時重心高度的變化,則他起跳后到重心最高時所用的時間是( 。
A.0.71sB.0.70sC.0.63sD.0.36s

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,頂點為M的拋物線經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達式;
(2)連接OM,求∠AOM的大。
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標.

查看答案和解析>>

同步練習冊答案