如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點(diǎn)G.

(1)觀察圖形,寫(xiě)出圖中所有與∠AED相等的角.

(2)選擇圖中與∠AED相等的任意一個(gè)角,并加以證明.

 


解:(1)由圖可知,∠DAG,∠AFB,∠CDE與∠AED相等;

(2)選擇∠DAG=∠AED,證明如下:

∵正方形ABCD,

∴∠DAB=∠B=90°,AD=AB,

∵AF=DE,

在△DAE與△ABF中,

,

∴△DAE≌△ABF(SAS),

∴∠ADE=∠BAF,

∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,

∴∠DAG=∠AED.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


九年級(jí)數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,得到某種運(yùn)動(dòng)服每月的銷(xiāo)量與售價(jià)的相關(guān)信息如下表:

售價(jià)(元/件)

100

110

120

130

月銷(xiāo)量(件)

200

180

160

140

已知該運(yùn)動(dòng)服的進(jìn)價(jià)為每件60元,設(shè)售價(jià)為x元.

(1)請(qǐng)用含x的式子表示:①銷(xiāo)售該運(yùn)動(dòng)服每件的利潤(rùn)是         元;②月銷(xiāo)量是         件;(直接寫(xiě)出結(jié)果)

(2)設(shè)銷(xiāo)售該運(yùn)動(dòng)服的月利潤(rùn)為y元,那么售價(jià)為多少時(shí),當(dāng)月的利潤(rùn)最大,最大利潤(rùn)是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


關(guān)于x的方程,有以下三個(gè)結(jié)論:①當(dāng)m=0時(shí),方程只有一個(gè)實(shí)數(shù)解②當(dāng)時(shí),方程有兩個(gè)不等的實(shí)數(shù)解③無(wú)論m取何值,方程都有一個(gè)負(fù)數(shù)解,其中正確的是 (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一元一次不等式2(x+1)≥4的解在數(shù)軸上表示為( )

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


公元前1700年的古埃及紙草書(shū)中,記載著一個(gè)數(shù)學(xué)問(wèn)題:“它的全部,加上它的七分之一,其和等于19.”此問(wèn)題中“它”的值為_(kāi)___ __.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


類(lèi)比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.

(1)概念理解

如圖1,在四邊形ABCD中,添加一個(gè)條件使得四邊形ABCD是“等鄰邊四邊形”.請(qǐng)寫(xiě)出你添加的一個(gè)條件.

(2)問(wèn)題探究

    ①小紅猜想:對(duì)角線互相平分的“等鄰邊四邊形”是菱形.她的猜想正確嗎?請(qǐng)說(shuō)明理由。

    ②如圖2,小紅畫(huà)了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并將Rt△ABC沿

∠ABC的平分線BB'方向平移得到△A'B'C',連結(jié)AA',BC'.小紅要是平移后的四邊形ABC'A'是“等鄰邊四邊形”,應(yīng)平移多少距離(即線段BB'的長(zhǎng))?

(3)應(yīng)用拓展

    如圖3,“等鄰邊四邊形”ABCD中,AB=AD,∠BAD+∠BCD==90°,AC,BD為對(duì)角線,AC=AB.試探究BC,CD,BD的數(shù)量關(guān)系.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在四邊形ABCD中,對(duì)角線AC、BD交于E,∠CBD=90º,BC=4,BE=ED=3,AC=10,則四邊形ABCD的面積為(     )

A、6    B、12     C、20     D、24

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


南海地質(zhì)勘探隊(duì)在南沙群島的一個(gè)小島發(fā)現(xiàn)很有價(jià)值的A、B兩種礦石,A礦石大約565噸,B礦石大約500噸,上報(bào)公司,要一次性將兩種礦石運(yùn)往冶煉廠,需要不同型號(hào)的甲、乙兩種貨船共30艘,甲貨船每艘運(yùn)費(fèi)1000元,乙貨船每艘費(fèi)用1200元。

(1)設(shè)運(yùn)送這些礦石的總運(yùn)費(fèi)為y元,若使用甲貨船x艘,請(qǐng)寫(xiě)出y與x之間的函數(shù)關(guān)系式;

(2)如果甲貨船最多可裝A礦石20噸和B礦石15噸,乙貨船最多可裝A礦石15噸和B礦石25噸,裝礦石時(shí)按此要求安排甲、乙兩種貨船,共有幾中安排方案?哪種方案運(yùn)費(fèi)最低并求出最低費(fèi)用。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


一個(gè)尋寶游戲的尋寶通道如圖1所示,通道由在同一平面內(nèi)的AB,BC,CA,OA,OB,OC組成。為記錄尋寶者的進(jìn)行路線,在BC的中點(diǎn)M處放置了一臺(tái)定位儀器,設(shè)尋寶者行進(jìn)的時(shí)間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示yx的函數(shù)關(guān)系的圖象大致如圖2所示,則尋寶者的行進(jìn)路線可能為

A.A→O→B      B.B→A→C      C.B→O→C       D.C→B→O

 

查看答案和解析>>

同步練習(xí)冊(cè)答案