【題目】創(chuàng)客聯(lián)盟的隊員想用3D打印完成一幅邊長為4米的正方形作品ABCD,設(shè)計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打;中心區(qū)是正方形A′B′C′D′,用材料乙打印).在打印厚度保持相同的情況下,兩種材料的消耗成本如下表
材料 | 甲 | 乙 |
價格(元/米2) | 60 | 30 |
設(shè)矩形的較短邊AH的長為x米,打印材料的總費用為y元.
(1)A′D′的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當中心區(qū)的邊長不小于3時,預備材料的購買資金700元夠用嗎?請利用函數(shù)的增減性來說明理由.
【答案】(1)4﹣2x;(2)y=﹣120x2+480x+480;(3)夠用,見解析
【解析】
(1)根據(jù)矩形和正方形的性質(zhì)解答即可;
(2)利用矩形的面積公式和正方形的面積公式解答即可;
(3)利用二次函數(shù)的性質(zhì)和最值解答即可.
解:(1)∵AH=GD′=x,AD=4,
∴A′D′=4﹣2x;
故答案為:4﹣2x;
(2)y關(guān)于x的函數(shù)解析式為:
y=60×4×x(4﹣x)+30×(4﹣2x)2=﹣120x2+480x+480;
(3)∵當中心區(qū)的邊長不小于3米時,
∴4﹣2x≥3,
解得:x≤,
∵y=﹣120x2+480x+480,a=﹣120<0,﹣=2,
∴當x≤時,y隨x增大而增大,
所以當x=時,y=690<700,
所以當中心區(qū)的邊長不小于3米時,預備材料的購買資金700元夠用.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2-4(k-1)x+4k2=0有兩個實數(shù)根x1、x2
(1) 求k的取值范圍
(2) 若x1x2-2|x1+x2|=4,求k的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A為x軸上一點,點B的坐標為(a,b),以OA,AB為邊構(gòu)造OABC,過點O,C,B的拋物線與x軸交于點D,連結(jié)CD,交邊AB于點E,若AE=BE,則點C的橫坐標為( 。
A.a﹣bB.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元.銷售價為每千克60元時,一天能銷售80千克,經(jīng)市場調(diào)查,該商品每漲價1元,一天銷售量就減少2千克,設(shè)該商品的售價漲了x元,每天銷售該商品的總利潤為y元.
(1)求y與x之間的函數(shù)表達式;
(2)當x為多少時每天總利潤y最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經(jīng)典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經(jīng)”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“慈善一日捐”活動中,為了解某校學生的捐款情況,抽樣調(diào)查了該校部分學生的捐款數(shù)(單位:元),并繪制成下面的統(tǒng)計圖.
(1)本次調(diào)查的樣本容量是________,這組數(shù)據(jù)的眾數(shù)為________元;
(2)求這組數(shù)據(jù)的平均數(shù);
(3)該校共有學生參與捐款,請你估計該校學生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的自變量x與函數(shù)值y的部分對應值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y=ax2+bx+c | … | t | m | ﹣2 | ﹣2 | n | … |
且當x=時,與其對應的函數(shù)值y>0,有下列結(jié)論:
①abc<0;②m=n;③﹣2和3是關(guān)于x的方程ax2+bx+c=t的兩個根;④.
其中,正確結(jié)論的個數(shù)是( 。.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com