27、閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”.
例如:如圖2,

邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB…連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”.
操作:如圖3,

如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)
k=
3
時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
5
時(shí),第一次出現(xiàn)△PQR的“三角形回歸”.
猜想:
我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
3
時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=
n
時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系.
分析:三個(gè)圖形中,第一次點(diǎn)回歸,連續(xù)轉(zhuǎn)動(dòng)的次數(shù)都是3次;第一次出現(xiàn)△PQR的“三角形回歸”,連續(xù)轉(zhuǎn)動(dòng)的次數(shù)就是多邊形的邊數(shù).
解答:解:操作:3,5.(4分)
猜想:(1)第一次點(diǎn)回歸,連續(xù)轉(zhuǎn)動(dòng)的次數(shù)都是3次,故填3;(6分)

(2)第一次出現(xiàn)△PQR的“三角形回歸”,連續(xù)轉(zhuǎn)動(dòng)的次數(shù)就是多邊形的邊數(shù),故填n;(8分)

(3)當(dāng)n不是3的倍數(shù)時(shí),k=3n,當(dāng)n是3的倍數(shù)時(shí),k=n.(9分)
點(diǎn)評(píng):正確理解題意是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”.
例如:如圖2,

邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB…連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”.
操作:如圖3,

如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)
k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”.
猜想:
我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇期末題 題型:解答題

閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”。
例如:如圖2,邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB……連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”。
操作:如圖3,如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=(    )時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=(    )時(shí),第一次出現(xiàn)△PQR的“三角形回歸”。
猜想:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=(    )時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=(    )時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007-2008學(xué)年江蘇省常州市溧陽市九年級(jí)(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”.
例如:如圖2,

邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB…連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”.
操作:如圖3,

如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)
k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”.
猜想:
我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年九年級(jí)(上)期中數(shù)學(xué)試卷二(解析版) 題型:解答題

閱讀:我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為整數(shù)的正n(n>3)邊形的邊按照如圖1的方式連續(xù)轉(zhuǎn)動(dòng),當(dāng)頂點(diǎn)P回到正n邊形的內(nèi)部時(shí),我們把這種狀態(tài)稱為它的“點(diǎn)回歸”;當(dāng)△PQR回到原來的位置時(shí),我們把這種狀態(tài)稱為它的“三角形回歸”.
例如:如圖2,

邊長(zhǎng)為1的等邊三角形PQR的頂點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi),頂點(diǎn)Q與點(diǎn)A重合,頂點(diǎn)R與點(diǎn)B重合,△PQR沿著正方形ABCD的邊BC、CD、DA、AB…連續(xù)轉(zhuǎn)動(dòng),當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)3次時(shí),頂點(diǎn)P回到正方形ABCD內(nèi)部,第一次出現(xiàn)P的“點(diǎn)回歸”;當(dāng)△PQR連續(xù)轉(zhuǎn)動(dòng)4次時(shí)△PQR回到原來的位置,出現(xiàn)第一次△PQR的“三角形回歸”.
操作:如圖3,

如果我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正五邊形ABCDE的邊連續(xù)轉(zhuǎn)動(dòng),則連續(xù)轉(zhuǎn)動(dòng)的次數(shù)
k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”.
猜想:
我們把邊長(zhǎng)為1的等邊三角形PQR沿著邊長(zhǎng)為1的正n(n>3)邊形的邊連續(xù)轉(zhuǎn)動(dòng),
(1)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)P的“點(diǎn)回歸”;
(2)連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k=______時(shí),第一次出現(xiàn)△PQR的“三角形回歸”;
(3)第一次同時(shí)出現(xiàn)P的“點(diǎn)回歸”與△PQR的“三角形回歸”時(shí),寫出連續(xù)轉(zhuǎn)動(dòng)的次數(shù)k與正多邊形的邊數(shù)n之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案