三角形ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫出將三角形ABC先向右平移一個(gè)單位長(zhǎng)度,再向下平移一個(gè)單位長(zhǎng)度得到的三角形A′B′C′,并寫出A′,B′,C′的坐標(biāo).
(2)在圖中依次描出下列各點(diǎn),并用線段按順序把它們連接起來(lái)(2,-4)(2,-5)(3,-5)(3,-2).
(3)圖中的三角形A′B′C′與你所畫的折線組合成一個(gè)什么圖形?
分析:(1)找到各點(diǎn)平移后的對(duì)應(yīng)點(diǎn),順次連接可得出三角形A′B′C′,結(jié)合直角坐標(biāo)系可得A′,B′,C′的坐標(biāo);
(2)根據(jù)點(diǎn)的坐標(biāo)找到各點(diǎn)的位置,順次連接即可;
(3)根據(jù)所得的圖形進(jìn)行判斷即可.
解答:解:(1)所畫圖形如下:

結(jié)合圖形可得:A'(3,0),B′(0,-2),C′(6,-2).

(2)所畫圖形如下:


(3)圖中的三角形A′B′C′與你所畫的折線組合成一個(gè):雨傘形狀(答案不唯一,合理即可).
點(diǎn)評(píng):本題考查了平移作圖及點(diǎn)的坐標(biāo),解答本題的關(guān)鍵是熟練掌握平移的特點(diǎn),能根據(jù)點(diǎn)的坐標(biāo)確定點(diǎn)的位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•沙坪壩區(qū)模擬)如圖1,在同一平面內(nèi),Rt△ABC≌Rt△DEF,其中∠ACB=∠DFE=90°,BC=EF=3,AC=DF=4,AC與DF重合,△ABC始終保持不動(dòng).
(1)將△DEF沿CB(EB)方向平移,直到點(diǎn)E與點(diǎn)B重合為止,設(shè)平移的距離為x,兩個(gè)三角形重疊部分的面積為y,寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如圖2,將△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后得到的三角形為△D′E′F,設(shè)D′E′與AC交于點(diǎn)M,當(dāng)∠ECE′=∠EAC時(shí),求線段CM的長(zhǎng);
(3)如圖3,在△DEF繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)的過(guò)程中,若設(shè)D′F所在直線與AB所在直線的交點(diǎn)為N,是否存在點(diǎn)N使△ACN為等腰三角形,若存在,求出線段BN的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•呼倫貝爾)如圖①,在平面直角坐標(biāo)系內(nèi),Rt△ABC≌Rt△FED,點(diǎn)C、D與原點(diǎn)O重合,點(diǎn)A、F在y軸上重合,∠B=∠E=30°,AC=FD=
3
.△FED不動(dòng),△ABC沿直線BE以每秒1個(gè)單位的速度向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)移動(dòng)x秒后兩個(gè)三角形重疊部分的面積為s.

(1)求出圖①中點(diǎn)B的坐標(biāo);
(2)如圖②,當(dāng)x=4秒時(shí),點(diǎn)M坐標(biāo)為(2,
3
3
),求出過(guò)F、M、A三點(diǎn)的拋物線的解析式;此拋物線上有一動(dòng)點(diǎn)P,以點(diǎn)P為圓心,以2為半徑的⊙P在運(yùn)動(dòng)過(guò)程中是否存在與y軸相切的情況?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)求出整個(gè)運(yùn)動(dòng)過(guò)程中s與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,在平面直角坐標(biāo)系內(nèi),Rt△ABC≌Rt△FED,點(diǎn)C、D與原點(diǎn)O重合,點(diǎn)A、F在y軸上重合,∠B=∠E=30°,AC=FD=數(shù)學(xué)公式.△FED不動(dòng),△ABC沿直線BE以每秒1個(gè)單位的速度向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)移動(dòng)x秒后兩個(gè)三角形重疊部分的面積為s.
作業(yè)寶
(1)求出圖①中點(diǎn)B的坐標(biāo);
(2)如圖②,當(dāng)x=4秒時(shí),點(diǎn)M坐標(biāo)為(2,數(shù)學(xué)公式),求出過(guò)F、M、A三點(diǎn)的拋物線的解析式;此拋物線上有一動(dòng)點(diǎn)P,以點(diǎn)P為圓心,以2為半徑的⊙P在運(yùn)動(dòng)過(guò)程中是否存在與y軸相切的情況?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)求出整個(gè)運(yùn)動(dòng)過(guò)程中s與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省孝感市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系內(nèi),Rt△ABC≌Rt△FED,點(diǎn)C、D與原點(diǎn)O重合,點(diǎn)A、F在y軸上重合,∠B=∠E=30°,AC=FD=.△FED不動(dòng),△ABC沿直線BE以每秒1個(gè)單位的速度向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)移動(dòng)x秒后兩個(gè)三角形重疊部分的面積為s.

(1)求出圖①中點(diǎn)B的坐標(biāo);
(2)如圖②,當(dāng)x=4秒時(shí),點(diǎn)M坐標(biāo)為(2,),求出過(guò)F、M、A三點(diǎn)的拋物線的解析式;此拋物線上有一動(dòng)點(diǎn)P,以點(diǎn)P為圓心,以2為半徑的⊙P在運(yùn)動(dòng)過(guò)程中是否存在與y軸相切的情況?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)求出整個(gè)運(yùn)動(dòng)過(guò)程中s與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年內(nèi)蒙古呼倫貝爾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖①,在平面直角坐標(biāo)系內(nèi),Rt△ABC≌Rt△FED,點(diǎn)C、D與原點(diǎn)O重合,點(diǎn)A、F在y軸上重合,∠B=∠E=30°,AC=FD=.△FED不動(dòng),△ABC沿直線BE以每秒1個(gè)單位的速度向右平移,直到點(diǎn)B與點(diǎn)E重合為止,設(shè)移動(dòng)x秒后兩個(gè)三角形重疊部分的面積為s.

(1)求出圖①中點(diǎn)B的坐標(biāo);
(2)如圖②,當(dāng)x=4秒時(shí),點(diǎn)M坐標(biāo)為(2,),求出過(guò)F、M、A三點(diǎn)的拋物線的解析式;此拋物線上有一動(dòng)點(diǎn)P,以點(diǎn)P為圓心,以2為半徑的⊙P在運(yùn)動(dòng)過(guò)程中是否存在與y軸相切的情況?若存在,直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)求出整個(gè)運(yùn)動(dòng)過(guò)程中s與x的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案