14.在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+n與x軸交于點(diǎn)A,B(A在B的左側(cè)).
(1)拋物線的對(duì)稱軸為直線x=-3,AB=4.求拋物線的表達(dá)式;
(2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過點(diǎn)O,且與x正半軸交于點(diǎn)C,記平移后的拋物線頂點(diǎn)為P,若△OCP是等腰直角三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)m=4時(shí),拋物線上有兩點(diǎn)M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,試判斷y1與y2的大小,并說明理由.

分析 (1)先根據(jù)拋物線和x軸的交點(diǎn)及線段的長(zhǎng),求出拋物線的解析式;
(2)根據(jù)平移后拋物線的特點(diǎn)設(shè)出拋物線的解析式,再利用等腰直角三角形的性質(zhì)求出拋物線解析式;
(3)根據(jù)拋物線的解析式判斷出點(diǎn)M,N的大概位置,再關(guān)鍵點(diǎn)M,N的橫坐標(biāo)的范圍即可得出結(jié)論.

解答 解:(1)拋物線 y=-x2+mx+n的對(duì)稱軸為直線x=-3,AB=4.
∴點(diǎn) A(-5,0),點(diǎn)B(-1,0).
∴拋物線的表達(dá)式為y=-(x+5)( x+1)
∴y=-x2-6x-5.
(2)如圖1,
依題意,設(shè)平移后的拋物線表達(dá)式為:y=-x2+bx.
∴拋物線的對(duì)稱軸為直線$x=\frac{2}$,拋物線與x正半軸交于點(diǎn)C(b,0).
∴b>0.
記平移后的拋物線頂點(diǎn)為P,
∴點(diǎn)P的坐標(biāo)($\frac{2}$,-$\frac{^{2}}{4}$+$\frac{^{2}}{2}$),
∵△OCP是等腰直角三角形,
∴$\frac{2}$=-$\frac{^{2}}{4}+\frac{^{2}}{2}$
∴b=2.
∴點(diǎn)P的坐標(biāo)(1,1).
(3)如圖2,
當(dāng)m=4時(shí),拋物線表達(dá)式為:y=-x2+4x+n.
∴拋物線的對(duì)稱軸為直線 x=2.
∵點(diǎn)M(x1,y1)和N(x2,y2)在拋物線上,
且x1<2,x2>2,
∴點(diǎn)M在直線x=2的左側(cè),點(diǎn)N在直線x=2的右側(cè).
∵x1+x2>4,
∴2-x1<x2-2,
∴點(diǎn)P到直線x=2的距離比
點(diǎn)M到直線x=2的距離比點(diǎn)N到直線x=2的距離近,
∴y1>y2

點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查了拋物線的性質(zhì),待定系數(shù)法,平移的性質(zhì),頂點(diǎn)坐標(biāo)的確定,函數(shù)值大小的確定,解本題的關(guān)鍵是熟練掌握拋物線的性質(zhì),是一道中等難度的中考?碱}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,A、B(0,2)兩點(diǎn)關(guān)于x軸對(duì)稱,點(diǎn)P為x軸正半軸上任意一點(diǎn).點(diǎn)C在線段PB上,AC交x軸于點(diǎn)M,CD平分∠ACB交x軸于點(diǎn)D.
(1)如圖,若CB=CM,連BD.求證:BD=MD;
(2)在(1)的條件下,連接AD,若點(diǎn)N在線段AM上(不含A、M點(diǎn))運(yùn)動(dòng),且NE⊥PD于E,NF⊥AD于F.則在N點(diǎn)運(yùn)動(dòng)的過程中,NE+NF的值是否發(fā)生變化?若不變,請(qǐng)證明求值;若變化,請(qǐng)求出變化范圍.
(3)若點(diǎn)C在線段PB(不含P、B兩點(diǎn))運(yùn)動(dòng),其余條件不變,OH∥CD分別交AC、PB于G,H,在C點(diǎn)的運(yùn)動(dòng)過程中,$\frac{AC-BH}{CG}$的值是否發(fā)生變化?若不變,證明并求值;若變化,請(qǐng)求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系中,拋物線y=$\frac{1}{4}$x2-bx+c與x軸交于點(diǎn)A(8,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)P為第四象限拋物線上一點(diǎn),連接PB并延長(zhǎng)交y軸于點(diǎn)D,若點(diǎn)P的橫坐標(biāo)為t,CD長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,連接AC,過點(diǎn)P作PH⊥x軸,垂足為點(diǎn)H,延長(zhǎng)PH交AC于點(diǎn)E,連接DE,射線DP關(guān)于DE對(duì)稱的射線DG交AC于點(diǎn)G,延長(zhǎng)DG交拋物線于點(diǎn)F,當(dāng)點(diǎn)G為AC中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,在Rt△ABC中,∠C=90°,AB=13,AC=12,則∠A的正弦值為(  )
A.$\frac{5}{12}$B.$\frac{12}{13}$C.$\frac{12}{5}$D.$\frac{5}{13}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.已知如圖,△ABC為等邊三角形,AB=6cm,D點(diǎn)在BC上,且∠ADE=60°,$\frac{DB}{DC}$=$\frac{1}{2}$,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.閱讀材料:
如果一個(gè)矩形的寬與長(zhǎng)的比值恰好為黃金比,人們就稱它為“黃金矩形”(Golden Rectangle).在很多藝術(shù)品以及大自然中都能找到它,希臘雅典的巴特農(nóng)神廟、法國巴黎圣母院就是很好的例子.
小明想畫出一個(gè)黃金矩形,經(jīng)過思考,他決定先畫一個(gè)邊長(zhǎng)為2的正方形ABCD,如圖1,取CD邊的中點(diǎn)E,連接BE,在BE上截取EF=EC,在BC上截取BG=BF;然后,小明作了兩條互相垂直的射線,如圖2,OF⊥OG于點(diǎn)O.小明利用圖1中的線段,在圖2中作出一個(gè)黃金矩形OMPN,且點(diǎn)M在射線OF上,點(diǎn)N在射線OG上.
請(qǐng)你幫助小明在圖1中完成作圖,要求尺規(guī)作圖,保留作圖痕跡.
(1)求CG的長(zhǎng);
(2)圖1中哪兩條線段的比是黃金比?請(qǐng)你指出其中一組線段;
(3)請(qǐng)你利用(2)中的結(jié)論,在圖2中作出一個(gè)黃金矩形OMPN,且點(diǎn)M在射線OF上,點(diǎn)N在射線OG上.要求尺規(guī)作圖,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖菱形ABCD中,∠ADC=60°,M、N分別為線段AB,BC上兩點(diǎn),且BM=CN,且AN,CM所在直線相交于E.

(1)填空:∠AEC=∠BAD,AE,CE,DE之間的數(shù)量關(guān)系A(chǔ)E+CE=DE;
(2)若M、N分別為線段AB,BC延長(zhǎng)線上兩點(diǎn),其他條件不變,(1)中的結(jié)論是否仍然成立?試畫圖并證明之.
(3)若菱形邊長(zhǎng)為3,M、N分別為線段AB,BC上兩點(diǎn)時(shí),連接BE,Q是BE的中點(diǎn),則AQ的取值范圍是$\frac{3}{2}$≤AQ≤$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖:函數(shù)y1=$\frac{1}{2}$x-2和y=-3x+5交于點(diǎn)A(2,-1),當(dāng)x<2 時(shí)y1<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知,△ABC內(nèi)接于⊙O,AB=AC,點(diǎn)D在⊙O上,點(diǎn)E在射線DC上且BD=CE,連接AE,BD
(1)如圖1,當(dāng)點(diǎn)D在弧BC上時(shí),求證:∠ACB=∠AED;
(2)如圖2,當(dāng)點(diǎn)D在弧AB上且點(diǎn)A、O、E三點(diǎn)共線時(shí),求證:DG=EG;
(3)如圖3,在(2)的條件下,連接AD,∠ABC的平分線交⊙O于點(diǎn)F,若AD=$\frac{7}{2}$,OA=$\frac{25}{4}$,求線段BF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案