如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=  .(用含n的式子表示)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:


設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.

⑴閱讀填空

如圖①,已知矩形ABCD,延長ADE,使DEDC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AHEH

∵ AE為直徑  ∴ ∠AHE=90°  ∴ ∠HAE+∠HEA=90°.

∵ DHAE  ∴ ∠ADH=∠EDH=90°

∴ ∠HAD+∠AHD=90°

∴ ∠AHD=∠HED  ∴ △ADH∽_____________.

∴ ,即AD×DE

又∵ DEDC  ∴ =____________,即正方形DFGH與矩形ABCD等積.

⑵操作實踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請用尺規(guī)作圖作出與□ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

⑶解決問題

三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的_________________(填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).

⑷拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n-1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


實數(shù)a在數(shù)軸的位置如圖所示,則|a﹣1|=  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖汽車標志中不是中心對稱圖形的是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正確結(jié)論的個數(shù)是( 。

 

A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


“低碳生活,綠色出行”的理念正逐漸被人們所接受,越來越多的人選擇騎自行車上下班.王叔叔某天騎自行車上班從家出發(fā)到單位過程中行進速度v(米/分鐘)隨時間t(分鐘)變化的函數(shù)圖象大致如圖所示,圖象由三條線段OA、AB和BC組成.設(shè)線段OC上有一動點T(t,0),直線l左側(cè)部分的面積即為t分鐘內(nèi)王叔叔行進的路程s(米).

(1)①當t=2分鐘時,速度v= 200 米/分鐘,路程s= 200 米;

②當t=15分鐘時,速度v= 300 米/分鐘,路程s= 4050 米.

(2)當0≤t≤3和3<t≤15時,分別求出路程s(米)關(guān)于時間t(分鐘)的函數(shù)解析式;

(3)求王叔叔該天上班從家出發(fā)行進了750米時所用的時間t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,∠B=40°,∠C=30°,延長BA至點D,則∠CAD的大小為( 。

 

A.

110°

B.

80°

C.

70°

D.

60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 若二次函數(shù)y=2x2的圖象向左平移2個單位長度后,得到函數(shù)y=2(x+h)2的圖象,則h=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知a+b=3,ab=2,則a2+b2的值為( 。

 

A.

3

B.

4

C.

5

D.

6

查看答案和解析>>

同步練習冊答案