正方形四條邊都相等,四個角都是90°,如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點E是BC上一點,以AE為邊在BC所在的直線MN的上方作正方形AEFG.
(1)判斷△ADG與△ABE是否全等,并說明理由;
(2)過點F作FH⊥MN,垂足為點H,觀察并猜測線段FH與線段CH的數(shù)量關系,并說明理由.
(1)△ADG≌△ABE.理由如下:
∵四邊形ABCD和四邊形AEFG是正方形,
∴AB=AD,AE=AG,∠ABE=∠ADG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△ADG≌△ABE;
(2)FH=CH.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射線CD上,∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,
∴EH=AD=BC,BE= FH
∴CH=BE.FH=CH
【解析】(1)利用正方形的性質及SAS定理求出△ADG≌△ABE,再利用全等三角形的性質即可解答;
(2)利用正方形的性質及SAS定理求出△ADG≌△ABE,再利用全等三角形的性質即可解答.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年江蘇吳江七年級下期期末調研數(shù)學試卷(帶解析) 題型:解答題
正方形四條邊都相等,四個角都是90°,如圖,已知正方形ABCD在直線MN的上方,BC在直線MN上,點E是BC上一點,以AE為邊在BC所在的直線MN的上方作正方形AEFG.
(1)判斷△ADG與△ABE是否全等,并說明理由;
(2)過點F作FH⊥MN,垂足為點H,觀察并猜測線段FH與線段CH的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com