【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展,小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)根據(jù)題意,填寫下表:
重量(千克) 費(fèi)用(元) | 0.5 | 1 | 3 | 4 | … |
甲公司 | _________ | 22 | _________ | 67 | … |
乙公司 | 11 | ________ | 51 | _________ | … |
(2)請(qǐng)分別寫出甲乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(3)小明應(yīng)選擇哪家快遞公司更省錢?
【答案】(1)11;52;19;67;(2)y甲;y乙=16x+3(x>0);(3)當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.
【解析】
(1)根據(jù)甲、乙公司的收費(fèi)方式,求出y值即可;
(2)根據(jù)甲、乙公司的收費(fèi)方式結(jié)合數(shù)量關(guān)系,找出y甲、y乙(元)與x(千克)之間的函數(shù)關(guān)系式;
(3)分0<x≤1和x>1兩種情況,分別求出y甲>y乙、y甲=y乙、y甲<y乙時(shí)x的取值范圍,綜上即可得出結(jié)論.
解:(1)當(dāng)x=0.5時(shí),y甲=22×0.5=11;
當(dāng)x=3時(shí),y甲=22+15×2=52;
當(dāng)x=1時(shí),y乙=16×1+3=19;
當(dāng)x=4時(shí),y乙=16×4+3=67.
故答案為:11;52;19;67.
(2)當(dāng)0<x≤1時(shí),y甲=22x;
當(dāng)x>1時(shí),y甲=22+15(x﹣1)=15x+7.
∴y甲.
y乙=16x+3(x>0).
(3)若0<x≤1,當(dāng)y甲>y乙時(shí),有22x>16x+3,
解得:;
當(dāng)y甲=y乙時(shí),有22x=16x+3,
解得:;
當(dāng)y甲<y乙時(shí),有22x<16x+3,
解得:;
若x>1,當(dāng)y甲>y乙時(shí),有15x+7>16x+3,
解得:x<4;
當(dāng)y甲=y乙時(shí),有15x+7=16x+3,
解得:x=4;
當(dāng)y甲<y乙時(shí),有15x+7<16x+3,
解得:x>4.
綜上可知:當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.
故答案為(1)11;52;19;67;(2)y甲;y乙=16x+3(x>0);(3)當(dāng)快遞物品少于千克或多于4千克時(shí),選擇甲公司省錢;當(dāng)快遞物品等于千克或等于4千克時(shí),兩家公司費(fèi)用一樣;當(dāng)快遞物品多于千克而少于4千克時(shí),選擇乙公司省錢.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC=3,BC=7,點(diǎn)P是邊AC上不與點(diǎn)A、C重合的一點(diǎn),作PD∥BC交AB邊于點(diǎn)D.
(1)如圖1,將△APD沿直線AB翻折,得到△AP'D,作AE∥PD.求證:AE=ED;
(2)將△APD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到△AP'D',點(diǎn)P、D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)P'、D',
①如圖2,當(dāng)點(diǎn)D'在△ABC內(nèi)部時(shí),連接P′C和D'B,求證:△AP'C∽△AD'B;
②如果AP:PC=5:1,連接DD',且DD'=AD,那么請(qǐng)直接寫出點(diǎn)D'到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形中,邊的長(zhǎng)為,邊的長(zhǎng)為,是長(zhǎng)方形邊上的一個(gè)動(dòng)點(diǎn),當(dāng)三點(diǎn)構(gòu)成的三角形為等腰三角形時(shí),的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,面積為1的正方形ABCD中,M,N分別為AD、BC的中點(diǎn),將C點(diǎn)折至MN上,落在P點(diǎn)的位置,折痕為BQ,連接PQ.以PQ為邊長(zhǎng)的正方形的面積等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,若AO=10,則⊙O的半徑長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有四張質(zhì)地完全相同的卡片,正面分別寫有四個(gè)角度,現(xiàn)將這四張卡片洗勻后,背面朝上.
(1)若從中任意抽取--張,求抽到銳角卡片的概宰;
(2)若從中任意抽取兩張,求抽到的兩張角度恰好互補(bǔ)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣3ax﹣4a的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3).
(1)求二次函數(shù)的表達(dá)式及點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)若點(diǎn)D在二次函數(shù)圖象上,且,求點(diǎn)D的橫坐標(biāo);
(3)將直線BC向下平移,與二次函數(shù)圖象交于M,N兩點(diǎn)(M在N左側(cè)),如圖2,過(guò)M作ME∥y軸,與直線BC交于點(diǎn)E,過(guò)N作NF∥y軸,與直線BC交于點(diǎn)F,當(dāng)MN+ME的值最大時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E,F分別在邊AC,BC上),給出以下判斷:①當(dāng)CD⊥AB時(shí),EF為△ABC的中位線;②當(dāng)四邊形CEDF為矩形時(shí),AC=BC;③當(dāng)點(diǎn)D為AB的中點(diǎn)時(shí),△CEF與△ABC相似;④當(dāng)△CEF與△ABC相似時(shí),點(diǎn)D為AB的中點(diǎn).其中正確的是_____(把所有正確的結(jié)論的序號(hào)都填在橫線上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com