(2008•三明)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-).].

【答案】分析:(1)因為點A在拋物線上,所以將點A代入函數(shù)解析式即可求得;
(2)由函數(shù)解析式可以求得其與x軸、y軸的交點坐標,即可求得AB、BC、AC的長,由勾股定理的逆定理可得三角形的形狀;
(3)首先可求得二次函數(shù)的頂點坐標,再求得C關(guān)于x軸的對稱點C′,求得直線C′D的解析式,與x軸的交點的橫坐標即是m的值.
解答:解:(1)∵點A(-1,0)在拋物線y=x2+bx-2上,
×(-1)2+b×(-1)-2=0,b=-
∴拋物線的解析式為y=x2-x-2
y=x2-x-2=(x2-3x-4)=(x-2-,
∴頂點D的坐標為(,-).(4分)

(2)當x=0時y=-2,
∴C(0,-2),OC=2.
當y=0時,x2-x-2=0,
∴x1=-1,x2=4,
∴B(4,0).(6分)
∴OA=1,OB=4,AB=5.
∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,
∴AC2+BC2=AB2
∴△ABC是直角三角形.  (8分)

(3)作出點C關(guān)于x軸的對稱點C′,則C′(0,2),OC′=2
連接C′D交x軸于點M,
根據(jù)軸對稱性及兩點之間線段最短可知,MC+MD的值最。  (9分)
解法一:設(shè)拋物線的對稱軸交x軸于點E.
∵ED∥y軸,
∴∠OC′M=∠EDM,∠C′OM=∠DEM
∴△C′OM∽△DEM.

,
∴m=12分
解法二:設(shè)直線C′D的解析式為y=kx+n,
,
解得n=2,k=-
∴y=-x+2.
∴當y=0時,-x+2=0,x=
∴m=.  (12分)
點評:此題考查了待定系數(shù)法求解析式,考查了二次函數(shù)與一次函數(shù)的綜合應(yīng)用,解題時要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•三明)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-).].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前知識點回歸+鞏固 專題13 二次函數(shù)(解析版) 題型:解答題

(2008•三明)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-,).].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年北京市平谷區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2008•三明)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-,).].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•三明)如圖,拋物線y=x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax2+bx+c的頂點坐標為(-,).].

查看答案和解析>>

同步練習(xí)冊答案