如圖,AB是⊙的直徑,弦CD與AB交于點(diǎn)E,過(guò)點(diǎn)作⊙的切線(xiàn)與的延長(zhǎng)線(xiàn)交于點(diǎn),如果,的中點(diǎn).

(1)求證:;
(2)求AB的長(zhǎng).
解:(1)聯(lián)結(jié)

的切線(xiàn)
=
的中點(diǎn),  ∴
    
的直徑,

=
     

(2)
,∴
,,∴
可得                  

中,
=                   
中,
                
(1)連接BC,由AF為圓O的切線(xiàn),利用切線(xiàn)的性質(zhì)得到AB與AF垂直,可得出∠DAF與∠DAB互余,再由D為EF的中點(diǎn),利用直角三角形斜邊上的中線(xiàn)等于斜邊的一半及中點(diǎn)的定義得到AD=DE=DF,利用等邊對(duì)等角得到∠DAF=∠AFC,又AB為圓的直徑,根據(jù)直徑所對(duì)的圓周角為直角,可得出∠ACB為直角,即∠ECB與∠FCA互余,再由同弧所對(duì)的圓周角相等得到∠ECB=∠DAB,利用等角的余角相等可得出∠DAF=∠FCA,等量代換可得出∠FCA=∠AFC;
(2)過(guò)C作CG垂直于AB,垂足為G,又AF垂直于AB,利用平面內(nèi)垂直于同一條直線(xiàn)的兩直線(xiàn)平行,得到AF與CG平行,根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等得到一對(duì)角相等,再由對(duì)頂角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似可得出三角形AEF與三角形ECG相似,由相似得比例列出比例式,由DF=DE及DE與EC的比值,求出CE與EF的比值,可得出AF與CG的比值,又AF=AC,進(jìn)而確定出AC與CG的比值,利用銳角三角形函數(shù)定義求出cos∠CAB的值,在直角三角形ABC中,由AC的長(zhǎng)及cos∠CAB的值,利用銳角函數(shù)定義即可求出AB的長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如下圖所示,在⊙內(nèi)有折線(xiàn),其中=8,,=12,∠=∠=60o,則的長(zhǎng)為(    )。
A.19B.16 C.18 D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,兩個(gè)同心圓的半徑分別為3cm和5cm,弦AB與小圓相切于點(diǎn)C,則AB=(   )
A.4cmB.5cm
C.6cmD.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在半徑為5的⊙O中,如果弦AB的長(zhǎng)為8,那么它的弦心距OC等于(  )
A.2B.3C.4 D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是一個(gè)“眾志成城,奉獻(xiàn)愛(ài)心”的圖標(biāo),圖標(biāo)中兩圓的位置關(guān)系是         (   )
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

⊙O的半徑為4,圓心到點(diǎn)P的距離為d,且d是方程x2-2x-8=0的根,則點(diǎn)P與⊙O的位置關(guān)系是(   )
A.點(diǎn)P在⊙O內(nèi)部B.點(diǎn)P在⊙O上C.點(diǎn)P在⊙O外部D.點(diǎn)P不在⊙O上

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點(diǎn)E,sinA=,則∠D的度數(shù)是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

現(xiàn)有一圓心角是90°,半徑是8cm的扇形紙片,用它恰好圍成一個(gè)圓錐的側(cè)面(接縫忽略不記),則該圓錐底面圓的半徑為 (   )                   
A.4cmB.3cmC.2cmD.1cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知中,斜邊AB=13cm,以直線(xiàn)BC為軸旋轉(zhuǎn)一周,得到一個(gè)側(cè)面積為65的圓錐,則BC="_______" cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案