△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
(1) 證明:△BDG≌△CEF;
(2) 設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng).(結(jié)果精確到十分位)
(3) 小穎想:不求正方形的邊長(zhǎng)我也能畫(huà)出正方形.具體作法是:如圖3
①在AB邊上任取一點(diǎn)G′,如圖作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.你認(rèn)為小穎的作法正確嗎?請(qǐng)說(shuō)明理由.
(1)證明:∵DEFG為正方形
∴GD=FE,∠GDB=∠FEC=90°
∵△ABC是等邊三角形
∴∠B=∠C=60°
∴△BDG≌△CEF(AAS)
(2)設(shè)正方形的邊長(zhǎng)為x,作△ABC的高AN,交BC于點(diǎn)N,交GF于點(diǎn)M
∵AN為等邊△ABC的高,AB=2
∴AN=,AM=-
∵△AGF∽△ABC
∴
∴
∴
∴正方形的邊長(zhǎng)約為0.9
(3)正確 理由如下:
由已知可知,四邊形GDEF為矩形
∵FE∥
∴
同理
∴
又∵
∴FE=FG
∴矩形GDEF為正方形
【解析】(1)根據(jù)正方形的性質(zhì)可以得到GD=FE,∠GDB=∠FEC=90°,利用等邊三角形得到∠B=∠C=60°,然后利用全等三角形的判定定理就可以證明了;
(2).設(shè)正方形的邊長(zhǎng)為x,作△ABC的高AH,可以求出AH的長(zhǎng),然后根據(jù)△AGF∽△ABC利用其對(duì)應(yīng)邊成比例;可以列出關(guān)于x的方程,然后求出x,也就求出了正方形的邊長(zhǎng);
(3).首先作一個(gè)正方形,然后利用位似圖形作圖就可以得到正方形DEFG,利用作法中的平行線可以得到比例線段,再根據(jù)比例線段就可以證明所作的圖形是正方形了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com