(2010•寧德)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
(1)求證:△AMB≌△ENB;
(2)①當(dāng)M點(diǎn)在何處時(shí),AM+CM的值最;
②當(dāng)M點(diǎn)在何處時(shí),AM+BM+CM的值最小,并說(shuō)明理由;
(3)當(dāng)AM+BM+CM的最小值為時(shí),求正方形的邊長(zhǎng).

【答案】分析:(1)由題意得MB=NB,∠ABN=15°,所以∠EBN=45°,容易證出△AMB≌△ENB;
(2)①根據(jù)“兩點(diǎn)之間線(xiàn)段最短”,可得,當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),AM+CM的值最小;
②根據(jù)“兩點(diǎn)之間線(xiàn)段最短”,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng)(如圖);
(3)作輔助線(xiàn),過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線(xiàn)于F,由題意求出∠EBF=30°,設(shè)正方形的邊長(zhǎng)為x,在Rt△EFC中,根據(jù)勾股定理求得正方形的邊長(zhǎng)為
解答:(1)證明:∵△ABE是等邊三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵M(jìn)B=NB,
∴△AMB≌△ENB(SAS).(5分)

(2)解:①當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),A、M、C三點(diǎn)共線(xiàn),AM+CM的值最。7分)
②如圖,連接CE,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),
AM+BM+CM的值最。9分)
理由如下:連接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.(10分)
根據(jù)“兩點(diǎn)之間線(xiàn)段最短”,得EN+MN+CM=EC最短
∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng).(11分)

(3)解:過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線(xiàn)于F,
∴∠EBF=∠ABF-∠ABE=90°-60°=30°.
設(shè)正方形的邊長(zhǎng)為x,則BF=x,EF=
在Rt△EFC中,
∵EF2+FC2=EC2,
∴(2+(x+x)2=.(12分)
解得,x1=,x2=-(舍去負(fù)值).
∴正方形的邊長(zhǎng)為.(13分)
點(diǎn)評(píng):本題考查軸對(duì)稱(chēng)的性質(zhì)和正方形的性質(zhì),是一道綜合性的題目難度很大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《概率》(05)(解析版) 題型:解答題

(2010•寧德)如圖1,拋物線(xiàn)與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線(xiàn)y=kx+b交于A、D兩點(diǎn).
(1)直接寫(xiě)出A、C兩點(diǎn)坐標(biāo)和直線(xiàn)AD的解析式;
(2)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n)落在圖1中拋物線(xiàn)與直線(xiàn)圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•寧德)如圖1,拋物線(xiàn)與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線(xiàn)y=kx+b交于A、D兩點(diǎn).
(1)直接寫(xiě)出A、C兩點(diǎn)坐標(biāo)和直線(xiàn)AD的解析式;
(2)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n)落在圖1中拋物線(xiàn)與直線(xiàn)圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省寧德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•寧德)如圖1,拋物線(xiàn)與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線(xiàn)y=kx+b交于A、D兩點(diǎn).
(1)直接寫(xiě)出A、C兩點(diǎn)坐標(biāo)和直線(xiàn)AD的解析式;
(2)如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)P(m,n)落在圖1中拋物線(xiàn)與直線(xiàn)圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年上海市奉賢區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2010•寧德)如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,如果∠1=35°,那么∠2是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱(chēng)》(01)(解析版) 題型:選擇題

(2010•寧德)如圖所示,如果將矩形紙沿虛線(xiàn)①對(duì)折后,沿虛線(xiàn)②剪開(kāi),剪出一個(gè)直角三角形,展開(kāi)后得到一個(gè)等腰三角形.則展開(kāi)后三角形的周長(zhǎng)是( )

A.2+
B.2+2
C.12
D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案