(2011•化州市二模)如圖所示實數(shù)a,b在數(shù)軸上的位置,以下四個命題中是假命題的是( )

A.a(chǎn)3-ab2<0
B.
C.,
D.a(chǎn)2<b2
【答案】分析:由數(shù)軸可知a>0,b<0,且|a|<|b|,由此可判斷a+b<0,a-b>0,再逐一檢驗.
解答:解:依題意,得a>0,b<0,且|a|<|b|,∴a+b<0,a-b>0,
A、a3-ab2=a(a+b)(a-b)<0,正確;
B、∵a+b<0,∴=-(a+b),錯誤;
C、∵0<a<a-b,∴,正確;
D、∵(a+b)(a-b)<0,∴a2-b2<0,即a2<b2,正確.
故選B.
點評:本題考查了數(shù)軸的運用,二次根式的性質(zhì)與化簡.關(guān)鍵是根據(jù)數(shù)軸判斷相關(guān)式子的符號.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最;
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市中考數(shù)學(xué)二模試卷(解析版) 題型:填空題

(2011•化州市二模)拋物線開口向下,則a=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A,B和點D(4,
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最。
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(37)(解析版) 題型:解答題

(2011•化州市二模)如圖,點O是△ABC的內(nèi)切圓的圓心,∠BAC=80°,求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案