如圖,△ABC中,D為AB的中點,E為AC上一點,過D作DF∥BE交AC于O,EF∥AB.
(1)猜想:OD與OF之間的關系是
OD=OF
OD=OF

(2)證明你的猜想.
分析:(1)0D=OF,
(2)由已知可得四邊形BDFE是平行四邊形,從而可得BD=EF,由中點的定義可得AD=BD,再根據(jù)平行線的性質即可得到∠ADO=∠EFO,∠DAO=∠FEO,從而可利用ASA判定△ADO≌△EFO,根據(jù)全等三角形的對應邊相等即可得到OD=OF,OA=OE,即得到AE與DF互相平分,或連接AF、DE,然后證明四邊形DEFA是平行四邊形,再根據(jù)平行四邊形的對角線互相平分證明.
解答:解:(1)OD=OF;

(2)∵EF∥AB,DF∥BE,
∴四邊形BDFE是平行四邊形,
∴BD=EF,
∵D是AB的中點,
∴AD=BD,
∴EF=AD,
∵EF∥AB,
∴∠ADO=∠EFO,∠DAO=∠FEO,
∠ADO=∠EFO
EF=AD
∠DAO=∠FEO
,
∴△ADO≌△EFO,
∴OD=OF.
點評:此題主要考查平行四邊形的判定及性質和全等三角形的判定及性質的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案