【題目】有這樣一個問題,如圖1,在等邊中,,的中點,分別是邊,上的動點,且,若,試求的長.愛鉆研的小峰同學(xué)發(fā)現(xiàn),可以通過幾何與函數(shù)相結(jié)合的方法來解決這個問題,下面是他的探究思路,請幫他補(bǔ)充完整.

1)注意到為等邊三角形,且,可得,于是可證,進(jìn)而可得,注意到中點,,因此滿足的等量關(guān)系為______

2)設(shè),,則的取值范圍是______.結(jié)合(1)中的關(guān)系求的函數(shù)關(guān)系.

3)在平面直角坐標(biāo)系中,根據(jù)已有的經(jīng)驗畫出的函數(shù)圖象,請在圖2中完成畫圖.

4)回到原問題,要使,即為,利用(3)中的圖象,通過測量,可以得到原問題的近似解為______(精確到0.1

【答案】1;(2,;(3)答案見解析;(41.6

【解析】

1)利用相似三角形的性質(zhì)即可解決問題.
2)求出當(dāng)點F與點A重合時BE的值即可判斷x的取值范圍.
3)利用描點法畫出函數(shù)圖象即可.
4)畫出兩個函數(shù)圖象,量出點P的橫坐標(biāo)即可解決問題.

解:(1)由,可得,

,

.

故答案為:

2)由題意:

∵由,可得,

,

,

故答案為:;.

3)函數(shù)圖象如圖所示:

4)觀察圖象可知兩個函數(shù)的交點P的橫坐標(biāo)約為1.6,故BE=1.6

故答案為1.6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中四邊形OABC是邊長為6的正方形,平行于對角線AC的直線lO出發(fā),沿x軸正方向以每秒一個單位長度的速度運動,運動到直線l與正方形沒有交點為止,設(shè)直線l掃過正方形OABC的面積為S,直線l的運動時間為t(秒),下列能反映St之間的函數(shù)圖象的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形的頂點軸正半軸上,平行于軸,直線軸于點,,連接,反比例函數(shù)的圖象經(jīng)過點.已知,則的值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PDCA的延長線于點P,過點AAECD于點E,過點BBFCD于點F

1)求證:DPAB;

2)試猜想線段AE、EF、BF之間的數(shù)量關(guān)系,并加以證明;

3)若AC6BC8,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,邊上,,的中點,連接并延長交,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ABC=90°,∠BAC30°,將ABC繞點A順時針旋轉(zhuǎn)一定的角度得到AED,點BC的對應(yīng)點分別是ED.

(1)如圖1,當(dāng)點E恰好在AC上時,求∠CDE的度數(shù);

(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了統(tǒng)計知識后,小明的數(shù)學(xué)老師要求每個學(xué)生就本班同學(xué)的上學(xué)方式進(jìn)行一次調(diào)查統(tǒng)計,如圖是小明通過收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:

(1)該班共有_______________名學(xué)生;

(2)騎自行車部分的條形統(tǒng)計圖補(bǔ)充完整;

(3)在扇形統(tǒng)計圖中;求出乘車部分所對應(yīng)的圓心角的度數(shù);

(4)若全年級有600名學(xué)生,試估計該年級騎自行車上學(xué)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有兩個實數(shù)根x1x2

1)求實數(shù)k的取值范圍;

2)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC中∠ACB90°EAB上,以AE為直徑的⊙OBC相切于D,與AC相交于F,連接AD

1)求證:AD平分∠BAC;

2)若DFAB,則BDCD有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案