如圖所示,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,作出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△A1B1C1并寫(xiě)出A1、B1、C1的坐標(biāo).

【答案】分析:根據(jù)直角坐標(biāo)系中,關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo),縱坐標(biāo)都互為相反數(shù),根據(jù)點(diǎn)的坐標(biāo)就確定原圖形的頂點(diǎn)的對(duì)應(yīng)點(diǎn),進(jìn)而即可作出所求圖形.
解答:解:根據(jù)圖形可知:A(-2,2),B(-3,0),C(-1,-1),
各點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)分別是:A1(2,-2),B1(3,0),C1(1,1),然后連接點(diǎn)再依次連接即可.
點(diǎn)評(píng):本題考查了關(guān)于原點(diǎn)對(duì)稱(chēng)的知識(shí),要求學(xué)生會(huì)畫(huà)圖,會(huì)表示點(diǎn)的坐標(biāo).關(guān)鍵是掌握關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo)特點(diǎn)是:橫坐標(biāo),縱坐標(biāo)都互為相反數(shù),根據(jù)點(diǎn)的坐標(biāo)就可以畫(huà)出對(duì)稱(chēng)圖形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車(chē)只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱(chēng)最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車(chē)距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車(chē)距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車(chē)距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車(chē)距離”為
7
7
.最短路線有
7
7
條;
②與原點(diǎn)O的“出租車(chē)距離”等于30的路口共有
120
120
個(gè).
(2)①解釋?xiě)?yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f(shuō)理或過(guò)程)
②解決問(wèn)題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有
780
780
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車(chē)只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱(chēng)最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車(chē)距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車(chē)距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車(chē)距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車(chē)距離”為_(kāi)_____.最短路線有______條;
②與原點(diǎn)O的“出租車(chē)距離”等于30的路口共有______個(gè).
(2)①解釋?xiě)?yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f(shuō)理或過(guò)程)
②解決問(wèn)題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年安徽省合肥市一中高一自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車(chē)只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱(chēng)最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車(chē)距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車(chē)距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車(chē)距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車(chē)距離”為_(kāi)_____.最短路線有______條;
②與原點(diǎn)O的“出租車(chē)距離”等于30的路口共有______個(gè).
(2)①解釋?xiě)?yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f(shuō)理或過(guò)程)
②解決問(wèn)題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

同步練習(xí)冊(cè)答案