如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E.
(1)求證:四邊形ADCE為矩形;
(2)當(dāng)四邊形ADCE是一個(gè)正方形時(shí),試判斷△ABC的形狀.
分析:(1)求出∠BAD=∠DAC,∠MAE=∠CAE,求出∠DAE的度數(shù),求出∠AEC=∠ADC=∠EAD=90°,根據(jù)矩形的判定判斷即可;
(2)求出AD=DC,得出∠ACD=∠DAC=45°,求出∠BAC=90°,即可求出答案.
解答:(1)證明:∵在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分線,
∴∠MAE=∠CAE.
∴∠DAE=∠DAC+∠CAE=
1
2
∠MAC+
1
2
∠CAB=
1
2
×180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形.

(2)證明:∵四邊形ADCE是正方形,
∴DC=AD,
∵在△ABC中,AB=AC,AD⊥BC,
∴△ADC為等腰直角三角形,
∴∠DAC=∠ACD=45°,
∴∠BAC=90°,
∴△ABC為等腰直角三角形,
即△ABC的形狀是等腰直角三角形.
點(diǎn)評(píng):本題考查了矩形性質(zhì),等腰直角三角形,正方形性質(zhì)的應(yīng)用,通過做此題培養(yǎng)了學(xué)生的推理能力,題目比較典型,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案