【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),B(b,3),C(4,0),且滿足(a+b)2+|a﹣b+6|=0,線段AB交y軸于F點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo).
(2)點(diǎn)D為y軸正半軸上一點(diǎn),若ED∥AB,且AM,DM分別平分∠CAB,∠ODE,如圖2,求∠AMD的度數(shù).
(3)如圖3,
①求點(diǎn)F的坐標(biāo);
②點(diǎn)P為坐標(biāo)軸上一點(diǎn),若△ABP的三角形和△ABC的面積相等?若存在,求出P點(diǎn)坐標(biāo).
【答案】(1)A(-3,0),B(3,3);(2)∠AMD=45°;(3)①F點(diǎn)坐標(biāo)為(0,);②滿足條件的P點(diǎn)坐標(biāo)為(0,5);(0,-2);(-10,0),(4,0).
【解析】
(1)根據(jù)非負(fù)數(shù)的性質(zhì)得a+b=0,a-b+6=0,然后解方程組求出a和b即可得到點(diǎn)A和B的坐標(biāo);
(2)由AB∥DE得∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°-∠FAO,所以∠ODE+90°-∠FAO=180°,再根據(jù)角平分線定義得∠OAN=∠FAO,∠NDM=∠ODE,則∠NDM-∠OAN=45°,得∠NDM+∠DNM=135°,即可求出∠NMD=45°;
(3)①連結(jié)OB,如圖3,設(shè)F(0,t),根據(jù)△AOF的面積+△BOF的面積=△AOB的面積,則可得到F點(diǎn)坐標(biāo)為(0,);
②先計(jì)算△ABC的面積=,分類討論:當(dāng)P點(diǎn)在y軸上時(shí),設(shè)P(0,y),利用△ABP的三角形=△APF的面積+△BPF的面積,此時(shí)P點(diǎn)坐標(biāo)為(0,5)或(0,-2);當(dāng)P點(diǎn)在x軸上時(shí),設(shè)P(x,0),求出此時(shí)P點(diǎn)坐標(biāo).
解:(1)∵(a+b)2+|a-b+6|=0,
∴a+b=0,a-b+6=0,
∴a=-3,b=3,
∴A(-3,0),B(3,3);
(2)如圖2,
∵AB∥DE,
∴∠ODE+∠DFB=180°,
而∠DFB=∠AFO=90°-∠FAO,
∴∠ODE+90°-∠FAO=180°,
∵AM,DM分別平分∠CAB,∠ODE,
∴∠OAN=∠FAO,∠NDM=∠ODE,
∴∠NDM-∠OAN=45°,
而∠OAN=90°-∠ANO=90°-∠DNM,
∴∠NDM-(90°-∠DNM)=45°,
∴∠NDM+∠DNM=135°,
∴180°-∠NMD=135°,
∴∠NMD=45°,
即∠AMD=45°;
(3)①連結(jié)OB,如圖3,
設(shè)F(0,t),
∵△AOF的面積+△BOF的面積=△AOB的面積,
∴
解得:t=,
∴F點(diǎn)坐標(biāo)為(0,);
②存在.
△ABC的面積=,
當(dāng)P點(diǎn)在y軸上時(shí),設(shè)P(0,y),
∵△ABP的三角形=△APF的面積+△BPF的面積,
∴,
解得y=5或y=-2,
∴此時(shí)P點(diǎn)坐標(biāo)為(0,5)或(0,-2);
當(dāng)P點(diǎn)在x軸上時(shí),設(shè)P(x,0),
則,
解得:x=-10或x=4,
∴此時(shí)P點(diǎn)坐標(biāo)為(-10,0),(4,0)
綜上所述,滿足條件的P點(diǎn)坐標(biāo)為(0,5);(0,-2);(-10,0),(4,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為BC的中點(diǎn),AE與對(duì)角線BD交于點(diǎn)F.
(1)求證:DF=2BF;
(2)當(dāng)∠AFB=90°且tan∠ABD= 時(shí),若CD= ,求AD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購(gòu)買(mǎi)若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買(mǎi)3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買(mǎi)2個(gè)足球和5個(gè)籃球共需500元。
(1)求購(gòu)買(mǎi)一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需從體育用品商店一次性購(gòu)買(mǎi)足球和籃球共96個(gè),要求購(gòu)買(mǎi)足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買(mǎi)多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在第x天的售價(jià)與銷量的相關(guān)信息如下表;已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤(rùn)為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大?最大利潤(rùn)是多少? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,∠A=90°,AB=AC,∠ABC 的角平分線交 AC 于 D,BD=4 ,過(guò)點(diǎn) C作 CE⊥BD 交 BD 的延長(zhǎng)線于 E,則 CE 的長(zhǎng)為( )
A.B.2 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)填空:點(diǎn)A的坐標(biāo)是 ,點(diǎn)B的坐標(biāo)是 ;
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′.請(qǐng)寫(xiě)出△A′B′C′的三個(gè)頂點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,以斜邊為底邊向外作等腰,連接.
(1)如圖1,若.①求證:分;
②若,求的長(zhǎng).
(2)如圖2,若,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com