11.計(jì)算sin245°+$\sqrt{8}$-sin60°•tan30°.

分析 原式利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.

解答 解:原式=$\frac{1}{2}$+2$\sqrt{2}$-$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{3}}{3}$=2$\sqrt{2}$.

點(diǎn)評(píng) 此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解下列方程:
(1)2-3(2-x)=4-x;                 
(2)$\frac{x+1}{2}$-1=$\frac{2-3x}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一次函數(shù)y=3x+6的圖象經(jīng)過(guò)( 。
A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.計(jì)算:(π-$\sqrt{2}}$)0+$\sqrt{18}$-4sin45°-($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知一次函數(shù)y=-$\frac{1}{2}$x+4與兩坐標(biāo)軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)0出發(fā),以每秒2個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),連接AP,設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)當(dāng)t為何值時(shí),△PAB的面積為6?
(2)若t<4,作△PAB中AP邊上的高BQ,問(wèn):當(dāng)t為何值時(shí),BQ長(zhǎng)為4?并直接寫出此時(shí)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x-3-20135
y-54-36-12-6-6-22
當(dāng)x=-1時(shí),對(duì)應(yīng)的函數(shù)值y=-22.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且∠PAC+∠PCA=$\frac{α}{2}$,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為150度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為PA2+PC2=PB2;
(2)如圖2,當(dāng)α=120°時(shí),參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;
(3)PA、PB、PC滿足的等量關(guān)系為4PA2•sin2$\frac{α}{2}$+PC2=PB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,拋物線y=a(x-1)2+k與x軸交于A、C兩點(diǎn),與y軸交于點(diǎn)B,點(diǎn)A、B的坐標(biāo)分別為(-1,0)和(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)M是直線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)M作y軸的平行線,與拋物線交于點(diǎn)D.
①若直線DM經(jīng)過(guò)線段BC的中點(diǎn),求點(diǎn)D的坐標(biāo);
②是否存在點(diǎn)M,使得以M、D、O、B為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算
(1)8+(-15)-(-9)+(-10)
(2)-22+|-7|-3-2×(-$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案