已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

【答案】分析:(1)可通過度數(shù)來求兩角相等.連接O2F,那么∠O2PF=∠O2FP=∠OBP,因此O2F∥AB,這樣可得出圓O2的圓心角∠OO2F=90°.因此∠OPF=45°,那么∠APO=90°-45°=45°,因此兩角相等.
(2)由于(1)中得出了O2F∥AB,因此只要證得DE⊥AB,就能得出DE⊥O2F,也就得出了DE是圓O2的切線的結論,那么關鍵是證明DE⊥AB.可通過垂徑定理來求.延長ED交⊙O1于點H,那么就要求出DE=DH或BE=BH,那么就要先求出∠BEH=∠BHE.連接PE,那么∠BHE=∠EPB,那么證∠EPB=∠DEB即可.可通過相似三角形BEF和BPE來求得,這兩個三角形中,已知了一個公共角,我們再看夾這個角的兩組對邊是否成比例.由于BO2=BF•BP,而BO=BE,因此BE2=BF•BP,由此可得出兩三角形相似,進而可根據(jù)前面分析的步驟得出本題的結論.
(3)MN的長度不變.這是因為點G是BC上的一個動點,但的O1C長度是不變的,它等于⊙的半徑8,另外∠BO1C的大小也是始終不變的,因為所有的⊙O3都是等圓,故弧MGN也都是相等的,故弦MN都是相等的,求MN的長,可通過構建全等三角形來求解,過N作⊙O3的直徑NK,連接MK,那么三角形NKM和EDO1全等,那么只要求出DE的長即可,根據(jù)直線的解析式,可得出O1,O2的坐標,也就求出了OO1,OO2的值,也就能得出圓O1的半徑的長,進而可求出AD,BD的長然后根據(jù)DE2=AD•DB即可得出MN的值.
解答:解:(1)連接O2F.
∵O2P=O2F,O1P=O1B,
∴∠O2PF=∠O2FP,∠O1PB=∠O1BP,
∴∠O2FP=∠O1BP.
∴O2F∥O1B,
得∠OO2F=90°,
∴∠OPB=∠OO2F=45°.
又∵AB為直徑,
∴∠APB=90°,
∴∠APO=∠BPO=45°.

(2)延長ED交⊙O1于點H,連接PE.
∵BO為切線,
∴BO2=BF•BP.
又∵BE=BO,
∴BE2=BF•BP.
而∠PBE=∠EBF,
∴△PBE∽△EBF,
∴∠BEF=∠BPE,
∴BE=BH,有AB⊥ED.
又由(1)知O2F∥O1B,
∴O2F⊥DE,
∴EF為⊙O2的切線.

(3)MN的長度不變.
過N作⊙O3的直徑NK,連接MK.則∠K=∠MO1N=∠EO1D,
且∠NMK=∠EDO1=90°,
又∵NK=O1E,
∴△NKM≌△EDO1
∴MN=ED.
而OO1=4,OO2=3,
∴O1O2=5,
∴O1A=8.即AB=16,
∵EF與圓O2相切,
∴O2F⊥ED,
則四邊形OO2FD為矩形,
∴O2F=OD,又圓O2的半徑O2F=3,
∴OD=3,
∴AD=7,BD=9.
ED2=AD•BD,
∴ED=3
故MN的長度不會發(fā)生變化,其長度為
點評:本題主要考查了圓與圓的位置關系,全等三角形,相似三角形的判定和性質以及一次函數(shù)等知識點的綜合應用.圖中邊和角較多,因此搞清楚圖中邊和角的關系是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,直線交⊙O于A、B兩點,AE是⊙O的直徑,點C為⊙O上一點,且AC平分∠PAE,過C作于D.

1.求證:CD為⊙O的切線;

2.若DC+DA=6,⊙O的直徑為10,求AB的長.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省湖州市中考數(shù)學一模試卷(解析版) 題型:解答題

已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)九年級中考適應性考試(一模)數(shù)學試卷(解析版) 題型:解答題

已知:如圖,直線交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.

(1)求b的值;

(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形.若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;

(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關系式,并寫出m的取值范圍.

 

查看答案和解析>>

同步練習冊答案