已知△ABC∽△DEF,若△ABC與△DEF的相似比為3:4,則△ABC與△DEF的面積之比為【   】
A.4:3B.3:4C.16:9D.9:16
D。
根據(jù)相似三角形的面積等于相似比平方的性質(zhì)直接得出結(jié)果:
△ABC與△DEF的面積為:。故選D。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(0,4),C(2,0).將矩形OABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)135º,得到矩形EFGH(點(diǎn)E與O重合).

(1)若GH交y軸于點(diǎn)M,則∠FOM=     ,OM=      
(2)將矩形EFGH沿y軸向上平移t個(gè)單位.
①直線GH與x軸交于點(diǎn)D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個(gè)平方單位,試求當(dāng)0<t≤4-2時(shí),S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(a,0),(其中a>0),直線l過動(dòng)點(diǎn)M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點(diǎn)D、E,P點(diǎn)在y軸上(P點(diǎn)異于C點(diǎn))滿足PE=CE,直線PD與x軸交于點(diǎn)Q,連接PA.

(1)寫出A、C兩點(diǎn)的坐標(biāo);
(2)當(dāng)0<m<1時(shí),若△PAQ是以P為頂點(diǎn)的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點(diǎn)的倍邊三角形),求出m的值;
(3)當(dāng)1<m<2時(shí),是否存在實(shí)數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4∶3,且BF=2,則DF=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,∠A<45°,點(diǎn)O為AB中點(diǎn),一個(gè)足夠大的三角板的直角頂點(diǎn)與點(diǎn)O重合,一邊OE經(jīng)過點(diǎn)C,另一邊OD與AC交于點(diǎn)M.

(1)如圖1,當(dāng)∠A=30°時(shí),求證:MC2=AM2+BC2;
(2)如圖2,當(dāng)∠A≠30°時(shí),(1)中的結(jié)論是否成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)寫出你認(rèn)為正確的結(jié)論,并說明理由;
(3)將三角形ODE繞點(diǎn)O旋轉(zhuǎn),若直線OD與直線AC相交于點(diǎn)M,直線OE與直線BC相交于點(diǎn)N,連接MN,則MN2=AM2+BN2成立嗎?
答:   (填“成立”或“不成立”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長為     ;
②當(dāng)AC=3,BC=4時(shí),AD的長為     ;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,點(diǎn)P是△ABC的外角∠BCN的角平分線上一個(gè)動(dòng)點(diǎn),點(diǎn)P′是點(diǎn)P關(guān)于直線BC的對(duì)稱點(diǎn),連結(jié)PP′交BC于點(diǎn)M,BP′交AC于D,連結(jié)BP、AP′、CP′.

(1)若四邊形BPCP′為菱形,求BM的長;
(2)若△BMP′∽△ABC,求BM的長;
(3)若△ABD為等腰三角形,求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:如圖1,點(diǎn)C在線段AB上,若滿足AC2=BC•AB,則稱點(diǎn)C為線段AB的黃金分割點(diǎn).
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點(diǎn)D.

(1)求證:點(diǎn)D是線段AC的黃金分割點(diǎn);
(2)求出線段AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,ABCD是邊長為1的正方形,對(duì)角線AC所在的直線上有兩點(diǎn)M、N,使∠MBN=1350,則MN的最小值是不是(    )
A.1+B.2+C.3+D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案