如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-
3
2
x2+bx
經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),且A點(diǎn)坐標(biāo)為(4,0),B的坐標(biāo)為(m,2
3
),點(diǎn)C是拋物線在第三象限的一點(diǎn),且橫坐標(biāo)為-2
(1)求拋物線的解析式和直線BC的解析式.
(2)直線BC與x軸相交于點(diǎn)D,求△OBC的面積.
(1)將點(diǎn)A的坐標(biāo)代入拋物線的解析式中,得:
-
3
2
×16+4b=0,b=2
3

∴拋物線的解析式:y=-
3
2
x2+2
3
x;
∴B(2,2
3
)、C(-2,-6
3

設(shè)直線BC的解析式為:y=kx+b,代入B、C點(diǎn)的坐標(biāo),得:
2k+b=2
3
-2k+b=-6
3

解得
k=2
3
b=-2
3

故直線BC的解析式:y=2
3
x-2
3


(2)由直線BC:y=2
3
x-2
3
知:D(1,0);
則S△OBC=
1
2
OD×|yB-yC|=
1
2
×1×8
3
=4
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G.
(1)點(diǎn)C、D的坐標(biāo)分別是C______,D______;
(2)求頂點(diǎn)在直線y=
3
x-2
3
上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè)).平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為M(2,-3),且經(jīng)過(guò)點(diǎn)A(0,1),直線y=x+1與拋物線交于A點(diǎn)和B點(diǎn).
(1)求這條拋物線的解析式;
(2)求△ABM的面積;
(3)如圖②,點(diǎn)P是x軸上的一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎?br>①過(guò)點(diǎn)P作PQAB,交BM于點(diǎn)Q,連接AQ,AP,當(dāng)△APQ的面積最大時(shí),求P的坐標(biāo).
②是否存在點(diǎn)P,使得△PAB是直角三角形?若存在,求出所有的點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知如圖:△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過(guò)點(diǎn)B、D.設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動(dòng)點(diǎn),連接PQ并延長(zhǎng)交BC于點(diǎn)E,連接BQ并延長(zhǎng)交AC于點(diǎn)F,則FC(AC+EC)=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(1,0)和B(3,0),點(diǎn)C(m,
15
)在拋物線的對(duì)稱軸上.
(1)求拋物線的函數(shù)表達(dá)式.
(2)求證:△ABC是等腰三角形.
(3)動(dòng)點(diǎn)P在線段AC上,從點(diǎn)A出發(fā)以每鈔1個(gè)單位的速度向C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段AB上,從B出發(fā)以每秒1個(gè)單位的速度向A運(yùn)動(dòng).當(dāng)Q到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,求當(dāng)t為何值時(shí),△APQ與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)A、B、C三點(diǎn).
(1)觀察圖象,寫(xiě)出A、B、C三點(diǎn)的坐標(biāo),并求出拋物線解析式;
(2)求此拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)觀察圖象,當(dāng)x取何值時(shí),y<0,y=0,y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

隨著海峽兩岸交流日益增強(qiáng),通過(guò)“零關(guān)稅”進(jìn)入我市的一種臺(tái)灣水果,其進(jìn)貨成本是每噸0.5萬(wàn)元,這種水果市場(chǎng)上的銷售量y(噸)是每噸的銷售價(jià)x(萬(wàn)元)的一次函數(shù),且x=0.6時(shí),y=2.4;x=1時(shí),y=2.
(1)求出銷售量y(噸)與每噸的銷售價(jià)x(萬(wàn)元)之間的函數(shù)關(guān)系式;
(2)若銷售利潤(rùn)為w(萬(wàn)元),請(qǐng)寫(xiě)出w與x之間的函數(shù)關(guān)系式,并求出銷售價(jià)為每噸2萬(wàn)元時(shí)的銷售利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.點(diǎn)M,N分別在邊AD,BC上運(yùn)動(dòng),并保持MNAB,ME⊥AB,NF⊥AB,垂足分別為E,F(xiàn).
(1)求梯形ABCD的面積;
(2)求四邊形MEFN面積的最大值;
(3)試判斷四邊形MEFN能否為正方形?若能,求出正方形MEFN的面積;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,頂點(diǎn)為D的拋物線y=x2+bx-3與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,連接BC,已知△BOC是等腰三角形.
(1)求點(diǎn)B的坐標(biāo)及拋物線y=x2+bx-3的解析式;
(2)求四邊形ACDB的面積;
(3)若點(diǎn)E(x,y)是y軸右側(cè)的拋物線上不同于點(diǎn)B的任意一點(diǎn),設(shè)以A,B,C,E為頂點(diǎn)的四邊形的面積為S.
①求S與x之間的函數(shù)關(guān)系式.
②若以A,B,C,E為頂點(diǎn)的四邊形與四邊形ACDB的面積相等,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案