(2013•三明)如圖,已知直線y=mx與雙曲線y=
k
x
的一個交點坐標為(3,4),則它們的另一個交點坐標是( 。
分析:反比例函數(shù)的圖象是中心對稱圖形,則與經過原點的直線的兩個交點一定關于原點對稱.
解答:解:因為直線y=mx過原點,雙曲線y=
k
x
的兩個分支關于原點對稱,
所以其交點坐標關于原點對稱,一個交點坐標為(3,4),另一個交點的坐標為(-3,-4).
故選:C.
點評:此題考查了函數(shù)交點的對稱性,通過數(shù)形結合和中心對稱的定義很容易解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•三明)如圖,直線a∥b,三角板的直角頂點在直線a上,已知∠1=25°,則∠2的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•三明)如圖是由五個完全相同的小正方體組成的幾何體,這個幾何體的主視圖是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•三明) 如圖,在四邊形ABCD中,AB∥CD,請你添加一個條件,使得四邊形ABCD成為平行四邊形,你添加的條件是
答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等
答案不唯一,如:AB=CD或AD∥BC或∠A=∠C或∠B=∠D或∠A+∠B=180°或∠C+∠D=180°等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•三明)如圖,△ABC的頂點坐標分別為A(-6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點A的對應點為D,拋物線y=ax2-10ax+c經過點C,頂點M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點D的坐標;
(2)求拋物線的對稱軸和函數(shù)表達式;
(3)在拋物線上是否存在點P,使得△PBD與△PCD的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案