如圖,圖1與圖2中的三角形相比,圖2中的三角形發(fā)生的變化是( )

A.向左平移3個單位長度
B.向左平移1個單位長度
C.向上平移3個單位長度
D.向下平移1個單位長度
【答案】分析:直接利用平移中點的變化規(guī)律求解即可.
解答:解:觀察圖形可得:圖1與圖2對應點所連的線段平行且相等,且長度是3;
故發(fā)生的變化是向左平移3個單位長度.
故選A.
點評:本題考查點坐標的平移變換.關鍵是要懂得左右平移點的縱坐標不變,而上下平移時點的橫坐標不變,平移中,對應點的對應坐標的差相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

2、如圖,圖1與圖2中的三角形相比,圖2中的三角形發(fā)生的變化是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間t(秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

(1)s與t之間的函數(shù)關系式是:
 
;
(2)與圖③相對應的P點的運動路徑是:
 
;P點出發(fā)
 
秒首次到達點B;精英家教網(wǎng)
(3)寫出當3≤s≤8時,y與s之間的函數(shù)關系式,并在圖③中補全函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,是從邊長為40cm、寬為30cm的矩形鋼板的左上角截取一塊長為20cm、寬為10cm的矩形后,剩下的一塊下腳料.工人師傅要將它作適當?shù)厍懈,重新拼接后焊成一個面積與原下腳料的面積相等,接縫盡可能短的正方形工件.
(1)請根據(jù)上述要求,設計出將這塊下腳料適當分割成三塊或三塊以上的兩種不同的拼接方案(在圖2和圖3中分別畫出切割時所沿的虛線,以及拼接后所得到的正方形,保留拼接的痕跡);
(2)比較(1)中的兩種方案,哪種更好一些?說說你的看法和理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖南省長沙市中考數(shù)學模擬試卷(二)(解析版) 題型:解答題

在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間t(秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

(1)s與t之間的函數(shù)關系式是:______;
(2)與圖③相對應的P點的運動路徑是:______;P點出發(fā)______秒首次到達點B;
(3)寫出當3≤s≤8時,y與s之間的函數(shù)關系式,并在圖③中補全函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆天津市南開區(qū)九年級上學期期中檢測數(shù)學試卷 題型:填空題

電焊工想利用一塊邊長為的正方形鋼板做成一個扇形,于是設計了以下三種方案:

方案一:如圖1,直接從鋼板上割下扇形

方案二:如圖2,先在鋼板上沿對角線割下兩個扇形,再焊接成一個大扇形(如圖3).

方案三:如圖4,先把鋼板分成兩個相同的小矩形,并在每個小矩形里割下兩個小扇形,然后將四個小扇形按與圖3類似的方法焊接成一個大扇形.

圖1                 圖2                圖3

1.容易得出圖1、圖3中所得扇形的圓心角均為,那么按方案三所焊接成的大扇形的圓心角也為嗎?為什么?

2.容易得出圖1中扇形與圖3中所得大扇形的面積相等,那么按方案三所焊成的大扇形的面積也與方案二所焊接成的大扇形的面積相等嗎?若不相等,面積是增大還是減。繛槭裁?

3.若將正方形鋼板按類似圖4的方式割成個相同的小矩形,并在每個小矩形里割下兩個小扇形,然后將這個小扇形按類似方案三的方式焊接成一個大扇形,則當逐漸增大時,所焊接成的大扇形的面積如何變化?

 

查看答案和解析>>

同步練習冊答案