【題目】問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E、F分別是BC、CD上的點,且∠EAF=60°.為了探究圖中線段BE,EF,FD之間的數(shù)量關系,小紅的想法是:在EB的延長線上取一點G,使得BG=DF,連接AG,證明△ABG≌△ADF;再證明△AGE≌△AFE,從而得到結(jié)論,她的結(jié)論是_____________.
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由.
實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西40°的A處,艦艇乙在指揮中心南偏東80°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以50海里/小時的速度,同時艦艇乙沿北偏東50°的方向以70海里/小時的速度各自前進2小時后,在指揮中心觀測到甲、乙兩艦艇分別到達E,F處,兩艦艇與指揮中心之間的夾角為70°,則此時兩艦艇之間的距離為______海里.
【答案】問題背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立;實際應用:240海里.
【解析】
問題背景:延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
探索延伸:延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
結(jié)論應用:連接EF,延長AE、BF相交于點C,然后與(2)同理可證;
解:問題背景:EF=BE+DF,證明如下:
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案為:EF=BE+DF;
探索延伸:結(jié)論EF=BE+DF仍然成立;
理由:延長FD到點P.使DP=BE.連結(jié)AP,如圖2,
在△ABE和△ADP中,
∴△ABE≌△ADP(SAS),
∴AE=AP,∠BAE=∠DAP,
∵∠EAF=∠BAD,
∴∠PAF=∠DAP+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠PAF,
在△AEF和△PAF中,
∴△AEF≌△APF(SAS),
∴EF=FP,
∵FP=DP+DF=BE+DF,
∴EF=BE+DF;
結(jié)論應用:如圖3,連接EF,延長AE、BF相交于點C,
∵∠AOB=40°+90°+(90°-80°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-40°)+(80°+50°)=180°,
∴符合探索延伸中的條件,
∴結(jié)論EF=AE+BF成立,
即EF=2×(50+70)=240海里.
答:此時兩艦艇之間的距離是240海;
科目:初中數(shù)學 來源: 題型:
【題目】某商場舉行開業(yè)酬賓活動,設立了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖所示,兩個轉(zhuǎn)盤均被等分),并規(guī)定:顧客購買滿188元的商品,即可任選一個轉(zhuǎn)盤轉(zhuǎn)動一次,轉(zhuǎn)盤停止后,指針所指區(qū)域內(nèi)容即為優(yōu)惠方式;若指針所指區(qū)域空白,則無優(yōu)惠.已知小張在該商場消費300元
(1)若他選擇轉(zhuǎn)動轉(zhuǎn)盤1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動轉(zhuǎn)盤1和轉(zhuǎn)盤2,哪種方式對于小張更合算,請通過計算加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt中,∠BAC=90°且AB=AC,D是邊BC上一點,E是邊AC上一點,AD=AE,若為等腰三角形,則∠CDE的度數(shù)為____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若∠BAC=80°,則∠BCA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定兩數(shù)之間的一種運算,記作();如果,那么(),例如因為,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:(4,16)= ,(7,1)= ,( ,81)=4.
(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象,(,)=(3,4),小明給出了如下的證明:
設(,),所以,即,所以,
即(3,4),所以(,)=(3,4),請你嘗試運用這種方法解決下列問題:
①證明:(6,45)-(6,9)=(6,5)
②猜想:(,)+(,)=( , )(結(jié)果化成最簡形式)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,用棋子擺成的“上”字:
第一個“上”字 第二個“上”字 第三個“上”字
如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,可以發(fā)現(xiàn):
(1)第四、第五個“上”字分別需用 和 枚棋子.
(2)第n個“上”字需用 枚棋子.
(3)如果某一圖形共有102枚棋子,你知道它是第幾個“上”字嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D在AC上,E在BA的延長線上,BD=CE,BD的延長線交CE于點F。求證:BF⊥CE。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com