(2008•紹興)將一張紙第一次翻折,折痕為AB(如圖1),第二次翻折,折痕為PQ(如圖2),第三次翻折使AP與PQ重合,折痕為PC(如圖3),第四次翻折使PB與PA重合,折痕為PD(如圖4).此時,如果將紙復(fù)原到圖1的形狀,則∠CPD的大小是( )

A.120°
B.90°
C.60°
D.45°
【答案】分析:根據(jù)平角定義和角平分線定義進行分析整理即可.
解答:解:第一次折疊,可以不考慮;
第二次折疊,∠APQ+∠BPQ=180°;
第三次折疊,∠CPQ=×∠APQ;
第四次折疊,∠DPQ=×∠BPQ;
∠CPD=∠CPQ+∠DPQ=∠APQ+∠BPQ=×180°=90°.
故選B.
點評:本題主要考查了折疊的特點,需理清折疊后角的變化,由此求出要求的角的度數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年山西省陽泉市盂縣九年級(下)第一次月考數(shù)學試卷(解析版) 題型:選擇題

(2008•紹興)將如圖所示的Rt△ABC繞直角邊AC旋轉(zhuǎn)一周,所得幾何體的主視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2008•紹興)將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設(shè)點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當t=1時,如圖1,將沿△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應(yīng)的t值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圖形的對稱》(04)(解析版) 題型:解答題

(2008•紹興)將一矩形紙片OABC放在平面直角坐標系中,O(0,0),A(6,0),C(0,3).動點Q從點O出發(fā)以每秒1個單位長的速度沿OC向終點C運動,運動秒時,動點P從點A出發(fā)以相等的速度沿AO向終點O運動.當其中一點到達終點時,另一點也停止運動.設(shè)點P的運動時間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當t=1時,如圖1,將沿△OPQ沿PQ翻折,點O恰好落在CB邊上的點D處,求點D的坐標;
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應(yīng)的t值;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年青海省西寧市中考數(shù)學試卷(解析版) 題型:選擇題

(2008•紹興)將如圖所示的Rt△ABC繞直角邊AC旋轉(zhuǎn)一周,所得幾何體的主視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年廣東省湛江市中考數(shù)學試卷(解析版) 題型:選擇題

(2008•紹興)將如圖所示的Rt△ABC繞直角邊AC旋轉(zhuǎn)一周,所得幾何體的主視圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案