(2010•順義區(qū))如圖,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的長.

【答案】分析:先求出BD的長度,再求得∠ADB=30°.過A作AE⊥BD于E,在△AED中,求AE、ED的長,可求BE,最后在Rt△ABE中,利用勾股定理求AB的長.
解答:解:過點A作AE⊥BD,垂足為E.
∵BD⊥DC,∠C=60°,BC=6,
∴∠1=30°,.(1分)
∵AD∥BC,
∴∠2=∠1=30°.
∵AE⊥BD,AD=4,
∴AE=2,,(3分)
,(4分)
.                   (5分)
點評:本題利用直角三角形30°角所對的直角邊等于斜邊的一半、平行線的性質和勾股定理求解,需要熟練掌握并靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2010•順義區(qū)二模)在平面直角坐標系xOy中,A、B為反比例函數(shù)y=
4
x
(x>0)的圖象上兩點,A點的橫坐標與B點的縱坐標均為1,將y=
4
x
(x>0)的圖象繞原點O順時針旋轉90°,A點的對應點為A′,B點的對應點為B′.
(1)求旋轉后的圖象解析式;
(2)求A′、B′點的坐標;
(3)連接AB′、動點M從A點出發(fā)沿線段AB'以每秒1個單位長度的速度向終點B′運動;動點N同時從B′點出發(fā)沿線段B′A′以每秒1個單位長度的速度向終點A′運動,當其中一個點停止運動時另一個點也隨之停止運動.設運動的時間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•順義區(qū))列方程或方程組解應用題:
在“五一”期間,小明、小亮等同學隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)小明他們一共去了
8
8
個成人,
4
4
個學生.
(2)請你幫助小明算一算,購買
團體票
團體票
方式購票更省錢.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•順義區(qū))如圖,直線l1:y=kx+b平行于直線y=x-1,且與直線l2相交于點P(-1,0).
(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點A.一動點C從點A出發(fā),先沿平行于x軸的方向運動,到達直線l2上的點B1處后,改為垂直于x軸的方向運動,到達直線l1上的點A1處后,再沿平行于x軸的方向運動,到達直線l2上的點B2處后,又改為垂直于x軸的方向運動,到達直線l1上的點A2處后,仍沿平行于x軸的方向運動,…
照此規(guī)律運動,動點C依次經(jīng)過點B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求點B1,B2,A1,A2的坐標;
②請你通過歸納得出點An、Bn的坐標;并求當動點C到達An處時,運動的總路徑的長?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市順義區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•順義區(qū))如圖,直線l1:y=kx+b平行于直線y=x-1,且與直線l2相交于點P(-1,0).
(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點A.一動點C從點A出發(fā),先沿平行于x軸的方向運動,到達直線l2上的點B1處后,改為垂直于x軸的方向運動,到達直線l1上的點A1處后,再沿平行于x軸的方向運動,到達直線l2上的點B2處后,又改為垂直于x軸的方向運動,到達直線l1上的點A2處后,仍沿平行于x軸的方向運動,…
照此規(guī)律運動,動點C依次經(jīng)過點B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求點B1,B2,A1,A2的坐標;
②請你通過歸納得出點An、Bn的坐標;并求當動點C到達An處時,運動的總路徑的長?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市順義區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2010•順義區(qū))已知正比例函數(shù)y=kx(k≠0)與反比例函數(shù)的圖象交于A、B兩點,且點A的坐標為(2,3).
(1)求正比例函數(shù)及反比例函數(shù)的解析式;
(2)在所給的平面直角坐標系中畫出兩個函數(shù)的圖象,根據(jù)圖象直接寫出點B的坐標及不等式的解集.

查看答案和解析>>

同步練習冊答案