【題目】如圖,在平行四邊形ABCD中,∠ADB=90°,AB=2AD,BD的垂直平分線分別交AB,CD于點(diǎn)E,F,垂足為O.
(1)求tan ∠ABD的值;
(2)求證:OE=OF;
(3)連接DE,BF,若AD=6,求DEBF的周長(zhǎng).
【答案】(1) tan∠ABD的值為;(2)見(jiàn)解析;(3)24
【解析】
(1)根據(jù)勾股定理和三角函數(shù)解答即可;
(2)根據(jù)平行四邊形的性質(zhì)和全等三角形的判定和性質(zhì)證明即可;
(3)先證四邊形DEBF是菱形,得到DE=EB=BF=DF.再證∠ABD=30°,進(jìn)而得到△ADE是等邊三角形,得到AE=AD=DE=6,即可得出結(jié)論.
(1)設(shè)AD=x,∴AB=2AD=2x.
∵∠ADB=90°,∴BD===,∴tan ∠ABD=;
(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠1=∠2.
∵EF是BD的中垂線,∴OD=OB,∠3=∠4=90°,∴△DOF≌△BOE,∴OE=OF;
(3)由(2)得:OE=OF,OD=OB,∴四邊形DEBF是平行四邊形.
∵EF⊥BD,∴四邊形DEBF是菱形,∴DE=EB=BF=DF.
∵tan ∠ABD=,∴∠ABD=30°,∴∠A=60°,∠EDB=∠ABD=30°,∴∠ADE=90°-30°=60°,∴△ADE是等邊三角形,∴AE=AD=DE=6,∴DEBF的周長(zhǎng)=4DE=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歷下區(qū)歷史文化悠久,歷下一名,取意于大舜帝耕作于歷山之下。這位遠(yuǎn)古圣人為濟(jì)南留下了影響深遠(yuǎn)的大舜文化,至今已綿延兩千年.某校就同學(xué)們對(duì)“舜文化”的了解程度進(jìn)行隨機(jī)抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計(jì)圖:
根據(jù)統(tǒng)計(jì)圖的信息,解答下列問(wèn)題:
(1)本次共調(diào)查 名學(xué)生,條形統(tǒng)計(jì)圖中 ;
(2)若該校共有學(xué)生1200名,請(qǐng)估算該校約有多少名學(xué)生不了解“舜文化”;
(3)謂查結(jié)果中,該校九年級(jí)(2)班有四名同學(xué)相當(dāng)優(yōu)秀,了解程度為“很了解”,他們是三名男生、—名女生,現(xiàn)準(zhǔn)備從這四名同學(xué)中隨機(jī)抽取兩人去市里參加“舜文化”知識(shí)競(jìng)賽,用樹狀或列表法,求恰好抽中一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以的三邊為邊分別作等邊、、,則下列結(jié)論:①①;②四邊形為平行四邊形;③當(dāng)時(shí),四邊形是菱形;④當(dāng)時(shí),四邊形是矩形.其中正確的結(jié)論有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標(biāo)為_______.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藥廠銷售部門根據(jù)市場(chǎng)調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型原料藥未來(lái)兩年的銷售進(jìn)行預(yù)測(cè),井建立如下模型:設(shè)第t個(gè)月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關(guān)系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設(shè)第t個(gè)月銷售該原料藥每噸的毛利潤(rùn)為Q(單位:萬(wàn)元),Q與t之間滿足如下關(guān)系:Q=
(1)當(dāng)8<t≤24時(shí),求P關(guān)于t的函數(shù)解析式;
(2)設(shè)第t個(gè)月銷售該原料藥的月毛利潤(rùn)為w(單位:萬(wàn)元)
①求w關(guān)于t的函數(shù)解析式;
②該藥廠銷售部門分析認(rèn)為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤(rùn)范圍,求此范圍所對(duì)應(yīng)的月銷售量P的最小值和最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)F在⊙O上,且點(diǎn)C是的中點(diǎn),過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D,交AF的延長(zhǎng)線于點(diǎn)E.
(1)求證:AE⊥DE;
(2)若∠BAF=60°,AF=4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船航行到 B 處時(shí),測(cè)得小島 A 在船的北偏東 60°的方向,輪船從 B 處繼續(xù)向正東方向航行 20 海里到達(dá) C 處時(shí),測(cè)得小島 A 在北船的北偏東 30°的方向.
(1)若小島 A 到這艘輪船航行路線 BC 的距離是 AD,求 AD 的長(zhǎng).
(2)已知在小島周圍 17 海里內(nèi)有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問(wèn)輪船有無(wú)觸礁的危險(xiǎn)?(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,點(diǎn)為上一點(diǎn),將沿折疊得到,點(diǎn)為上一點(diǎn),將沿折疊得到,且落在線段上,當(dāng)時(shí),則的長(zhǎng)為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com